General Review Of The Range Of Forest Products In Turkey; As An Both Wood And Non-Wood Basis

Prof. Dr. Hasan VURDU
Gazi Üniversitesi Kastamonu Orman Fakültesi
Orman Endüstri Mühendisliği Bölümü

Forest in Turkey is having a rich biological and genetic diversity and the major source of forest products and non-wood products industries. Therefore, their current situation such as forest land, tree species, growing stock, annual increment and the annual allowable cut shall be examined as follows.

1- FOREST LAND

Land classified as forest occupies 20 763 248 ha of Turkey’s total amount of 77 945 200 ha land area. That is the fourth largest forest resources in Europe and the Middle East. The principal forests are located in the mountain ranges and hills near the Black, Aegean and Mediterranean Seas; few high forests are in the Central and Eastern plateaus. The productive high forests and coppice forests areas are 10.027.568 ha and the rest of the forest land is unproductive and degraded forests (Table 1, Figure 1).

Table 1. Forest Area (Hectares).

<table>
<thead>
<tr>
<th></th>
<th>High Forest</th>
<th>Coppice</th>
<th>Total Forest Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productive</td>
<td>8.237.753</td>
<td>1.789.815</td>
<td>10.027.568</td>
</tr>
<tr>
<td>Unproductive</td>
<td>6.180.587</td>
<td>4.555.093</td>
<td>10.735.680</td>
</tr>
<tr>
<td>Total</td>
<td>14.418.340</td>
<td>6.344.908</td>
<td>20.763.248</td>
</tr>
</tbody>
</table>

* DPT.
2- TREE SPECIES

The forests of Turkey are predominantly of mixed, coniferous/deciduous type. Species of commercial significance include Fir (Abies spp.), Pines (Pinus spp.), Beech (Fagus spp.), and Oak (Quercus spp.). 53.9% of the total forest areas is coniferous and of 46.1% is deciduous (Table 2, Figure 2 and 3).

![Figure 2. Distribution of Forest Tree Species (Deciduous)](image-url)
Table 2. Distribution of Forest Tree Species.

<table>
<thead>
<tr>
<th>Species</th>
<th>High Forests</th>
<th>Coppice</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deciduous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia-Acacia</td>
<td>1401.7</td>
<td>160.5</td>
<td>1892.5</td>
</tr>
<tr>
<td>Maple-Acer</td>
<td>1723.8</td>
<td>1345.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Walnut-Juglans</td>
<td>201.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Plane-Platanus</td>
<td>804.5</td>
<td>653.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Laurel-Laurus</td>
<td>0.0</td>
<td>1345.5</td>
<td>201.1</td>
</tr>
<tr>
<td>Ash-Fraxinus</td>
<td>8097.8</td>
<td>1424.9</td>
<td>2123.2</td>
</tr>
<tr>
<td>Hazelnut-Corylus</td>
<td>40.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hornbeam-Carpyus</td>
<td>58844.1</td>
<td>25401.0</td>
<td>4437.6</td>
</tr>
<tr>
<td>Birch-Betula</td>
<td>11.0</td>
<td>261.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Lime-Tilia</td>
<td>4945.3</td>
<td>438.8</td>
<td>37.2</td>
</tr>
<tr>
<td>Elm-Ulmus</td>
<td>79.4</td>
<td>48.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Poplar-Populus</td>
<td>10729.1</td>
<td>17159.3</td>
<td>502.7</td>
</tr>
<tr>
<td>Hop Horbeam-Ostrya</td>
<td>652.7</td>
<td>1304.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Beech-Fagus</td>
<td>1060976.4</td>
<td>263538.7</td>
<td>1405.3</td>
</tr>
<tr>
<td>Chesnut-Castanea</td>
<td>56943.9</td>
<td>26791.5</td>
<td>15455.7</td>
</tr>
<tr>
<td>Alder-Alnus</td>
<td>57683.8</td>
<td>51011.7</td>
<td>82.9</td>
</tr>
<tr>
<td>Oak-Quercus</td>
<td>350328.5</td>
<td>802775.0</td>
<td>1524011.8</td>
</tr>
<tr>
<td>Eucalypt-Eucalyptus</td>
<td>785.3</td>
<td>1167.7</td>
<td>3047.7</td>
</tr>
<tr>
<td>Sweetgum-Liquidambar</td>
<td>1937.3</td>
<td>1200.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Willow-Salix</td>
<td>158.7</td>
<td>2010.5</td>
<td>7.4</td>
</tr>
<tr>
<td>False Acacia-Robinia</td>
<td>259.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Others</td>
<td>60953.0</td>
<td>378488.5</td>
<td>233189.1</td>
</tr>
<tr>
<td>Deciduous Total</td>
<td>1677557.3</td>
<td>1576587.8</td>
<td>1786395.4</td>
</tr>
</tbody>
</table>

* DTP
Table 2. Distribution of Forest Tree Species (continue)

<table>
<thead>
<tr>
<th>Species</th>
<th>Coniferous</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juniper-Juniperus</td>
<td>801463.3</td>
<td></td>
</tr>
<tr>
<td>Pinus pinea</td>
<td>37074.5</td>
<td></td>
</tr>
<tr>
<td>Fir-Abies</td>
<td>463525.8</td>
<td></td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>3376.4</td>
<td></td>
</tr>
<tr>
<td>Pinus nigra</td>
<td>2158488.0</td>
<td></td>
</tr>
<tr>
<td>Pinus brutia</td>
<td>2653543.9</td>
<td></td>
</tr>
<tr>
<td>Spruce-Picea</td>
<td>185331.2</td>
<td></td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>2429.1</td>
<td></td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>55435.1</td>
<td></td>
</tr>
<tr>
<td>P.menziesii</td>
<td>345.0</td>
<td></td>
</tr>
<tr>
<td>Scotspine-Pinus sylvestris</td>
<td>688509.4</td>
<td></td>
</tr>
<tr>
<td>Cedar-Cedrus</td>
<td>223917.6</td>
<td></td>
</tr>
<tr>
<td>Cypress-Cupressus</td>
<td>693.8</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>7379.8</td>
<td></td>
</tr>
<tr>
<td>Coniferous Total</td>
<td>6560195.9</td>
<td>8237753.2</td>
</tr>
<tr>
<td>Grand Total</td>
<td>8237753.2</td>
<td>20763248.2</td>
</tr>
</tbody>
</table>

Figure 3. Distribution of Forest Tree Species (Coniferous)
3- STANDING TREE VOLUME

For 1999 survey results, coniferous/deciduous standing tree volume accounts 73% and 27% respectively (Table 3, Figure 4).

Table 3. Forest Standing Tree Volume For 1999.

<table>
<thead>
<tr>
<th>Tree Species</th>
<th>High Forests (m³)</th>
<th>Coppice (Stere)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Productive</td>
<td>Degraded</td>
</tr>
<tr>
<td>Deciduous</td>
<td>277 465</td>
<td>19 187</td>
</tr>
<tr>
<td>Coniferous</td>
<td>755 275</td>
<td>44 478</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1 032 740</td>
<td>63 665</td>
</tr>
</tbody>
</table>

* DPT.
* 1 stere = 0.750 m³

4- ANNUAL INCREMENT POTENTIAL

The total annual increment of standing tree volume of forests was 34,269,649 m³ in 1999 (Table 4).
Table 4. Annual Increment of Forests For 1999.

<table>
<thead>
<tr>
<th></th>
<th>High Forest</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Productive</td>
<td>Degraded</td>
<td>Productive</td>
<td>Degraded</td>
</tr>
<tr>
<td></td>
<td>Annual Increment (m³)</td>
<td>Total</td>
<td>Coniferous</td>
<td>Deciduous</td>
</tr>
<tr>
<td>Coniferous</td>
<td>19949179</td>
<td>26661655</td>
<td>597286</td>
<td>1577898</td>
</tr>
<tr>
<td>Degraded</td>
<td>6712476</td>
<td>980612</td>
<td>577898</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>26661655</td>
<td>597286</td>
<td>1577898</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Coppice</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Productive</td>
<td>Degraded</td>
<td>Productive</td>
<td>Degraded</td>
</tr>
<tr>
<td></td>
<td>Annual Increment (stere)</td>
<td>Total</td>
<td>Coniferous</td>
<td>Deciduous</td>
</tr>
<tr>
<td>Coniferous</td>
<td>6189601</td>
<td>3724</td>
<td>1843893</td>
<td>1847617</td>
</tr>
<tr>
<td>Degraded</td>
<td>6192512</td>
<td>3724</td>
<td>1843893</td>
<td>1847617</td>
</tr>
<tr>
<td>Total</td>
<td>3137193</td>
<td>7448</td>
<td>3791786</td>
<td>3799663</td>
</tr>
</tbody>
</table>

* DPT.
* 1 stere = 0.750 m³

5- THE ANNUAL ALLOWABLE CUT

The Forest Management Plans dictate the annual allowable cut as 11,997.088 m³ standing stem volume of productive high forest and 7,841.349 stere of coppice forests. The annual allowable cut is given in Table 5 as the tree species.

Table 5. The Annual Allowable Cut For The Tree Species.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>Standing Stem Volume (m³)</th>
<th>Expected Above Soil High Forest Allowable Cut (m³)</th>
<th>Coppice Forests Annual Allowable Cut (Ster)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maple-Acer</td>
<td>924</td>
<td>3449.00</td>
<td></td>
</tr>
<tr>
<td>Plane-Platanus</td>
<td>219</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Ash-Fraxinus</td>
<td>4031</td>
<td>72801.00</td>
<td></td>
</tr>
<tr>
<td>Hornbeam-Carpinus</td>
<td>66138</td>
<td>9632.00</td>
<td></td>
</tr>
<tr>
<td>Lime-Tilia</td>
<td>2292</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Poplar-Populus</td>
<td>48802</td>
<td>14469.92</td>
<td></td>
</tr>
<tr>
<td>Hop Honbeam-Ostrya</td>
<td>230</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Beech-Fagus</td>
<td>2393274</td>
<td>4299.00</td>
<td></td>
</tr>
<tr>
<td>Chesnut-Castanea</td>
<td>26750</td>
<td>142835.80</td>
<td></td>
</tr>
<tr>
<td>Alder-Alnus</td>
<td>42008</td>
<td>691.98</td>
<td></td>
</tr>
<tr>
<td>Oak-Quercus</td>
<td>487821</td>
<td>6314918.91</td>
<td></td>
</tr>
<tr>
<td>Eucalypt-Eucalyptus</td>
<td>6</td>
<td>18528.80</td>
<td></td>
</tr>
<tr>
<td>Sweet Gum-Liquidambar</td>
<td>540</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>76418</td>
<td>1272495.75</td>
<td></td>
</tr>
<tr>
<td>Deciduous Total</td>
<td>3149503</td>
<td>3936877</td>
<td>7841099.16</td>
</tr>
</tbody>
</table>

* DPT.
Table 5. The Annual Allowable Cut For The Tree Species (Continue)

<table>
<thead>
<tr>
<th>CONIFEROUS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Juniper-Juniperus</td>
<td>11189</td>
<td>250.00</td>
</tr>
<tr>
<td>Pinus picea</td>
<td>1430</td>
<td>0.00</td>
</tr>
<tr>
<td>Fir-Abies</td>
<td>953050</td>
<td>0.00</td>
</tr>
<tr>
<td>Pinus nigra</td>
<td>2594001</td>
<td>0.00</td>
</tr>
<tr>
<td>Pinus brutia</td>
<td>3777696</td>
<td>0.00</td>
</tr>
<tr>
<td>Spruce-Picea</td>
<td>433067</td>
<td>0.00</td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>44</td>
<td>0.00</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>1238146</td>
<td>0.00</td>
</tr>
<tr>
<td>Cedar-Cedrus</td>
<td>117153</td>
<td>0.00</td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>18165</td>
<td>0.00</td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>2342</td>
<td>0.00</td>
</tr>
<tr>
<td>Others</td>
<td>1304</td>
<td>0.00</td>
</tr>
<tr>
<td>Coniferous Total</td>
<td>9 147 587</td>
<td>10617103</td>
</tr>
<tr>
<td>Grand Total</td>
<td>12 297 090</td>
<td>14553980</td>
</tr>
</tbody>
</table>

* DPT.

6- NON-WOOD PRODUCTIONS OF FORESTS

Forests provide various edible foods such as fruits, nuts, leaves, roots. In addition to edible foods, different resins, gums are also obtained from the forest for industrial uses. Unfortunately, the reliable data for different non-wood forest products are not available. However, non-wood forest production programme of the Ministry of Forestry is given in Table 6, 7 and 8.
Table 6. Non-Wood Production of Forests.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resins</td>
<td>Ton</td>
<td>140</td>
<td>225</td>
<td>230</td>
<td>230</td>
<td>310</td>
</tr>
<tr>
<td>Sweet gums</td>
<td>Kg.</td>
<td>4 000</td>
<td>-</td>
<td>3 000</td>
<td>1 000</td>
<td>2 000</td>
</tr>
<tr>
<td>Laurel leaf</td>
<td>Ton</td>
<td>982</td>
<td>2 870</td>
<td>3 950</td>
<td>2 430</td>
<td>2 350</td>
</tr>
<tr>
<td>Stick</td>
<td>Ster</td>
<td>3 800</td>
<td>3 500</td>
<td>5 000</td>
<td>5 000</td>
<td>-</td>
</tr>
<tr>
<td>Resinous wood</td>
<td>Ton</td>
<td>500</td>
<td>1 000</td>
<td>2 500</td>
<td>3 500</td>
<td>3 500</td>
</tr>
<tr>
<td>Resinous root</td>
<td>Ton</td>
<td>10 000</td>
<td>10 000</td>
<td>10 000</td>
<td>10 000</td>
<td>10 000</td>
</tr>
<tr>
<td>Incense</td>
<td>Kg.</td>
<td>950</td>
<td>-</td>
<td>900</td>
<td>2 150</td>
<td>2 000</td>
</tr>
<tr>
<td>Garden sage</td>
<td>Ton</td>
<td>451</td>
<td>684</td>
<td>338</td>
<td>403</td>
<td>450</td>
</tr>
<tr>
<td>Garden thyme</td>
<td>Ton</td>
<td>2 235</td>
<td>3 157</td>
<td>2 440</td>
<td>2 587</td>
<td>2 500</td>
</tr>
<tr>
<td>Pine nut</td>
<td>Ton</td>
<td>418</td>
<td>231</td>
<td>541</td>
<td>693</td>
<td>500</td>
</tr>
<tr>
<td>Mushroom</td>
<td>Kg.</td>
<td>64 518</td>
<td>30 112</td>
<td>11 414</td>
<td>17 202</td>
<td>30 000</td>
</tr>
<tr>
<td>Ruscus aculeatus</td>
<td>Ton</td>
<td>214</td>
<td>90</td>
<td>348</td>
<td>282</td>
<td>120</td>
</tr>
<tr>
<td>Sumac</td>
<td>Ton</td>
<td>19</td>
<td>93</td>
<td>48</td>
<td>62</td>
<td>40</td>
</tr>
<tr>
<td>Rosmary</td>
<td>Ton</td>
<td>450</td>
<td>365</td>
<td>170</td>
<td>206</td>
<td>300</td>
</tr>
<tr>
<td>Cherry laurel</td>
<td>Kg.</td>
<td>72 700</td>
<td>49 900</td>
<td>37 800</td>
<td>31 150</td>
<td>40 600</td>
</tr>
<tr>
<td>Linden</td>
<td>Kg.</td>
<td>28 271</td>
<td>6 040</td>
<td>6 969</td>
<td>3 262</td>
<td>4 000</td>
</tr>
<tr>
<td>Chestnut</td>
<td>Ton</td>
<td>350</td>
<td>88</td>
<td>262</td>
<td>121</td>
<td>250</td>
</tr>
<tr>
<td>Snowdrop</td>
<td>Kg.</td>
<td>2 809</td>
<td>17 897</td>
<td>24 233</td>
<td>1 659</td>
<td>4 000</td>
</tr>
<tr>
<td>Cyclamen</td>
<td>Kg.</td>
<td>42 342</td>
<td>70 292</td>
<td>66 973</td>
<td>69 548</td>
<td>36 000</td>
</tr>
<tr>
<td>Other onious</td>
<td>Kg.</td>
<td>33 116</td>
<td>21 417</td>
<td>89 972</td>
<td>136 080</td>
<td>90 000</td>
</tr>
<tr>
<td>Laden</td>
<td>Ton</td>
<td>38</td>
<td>214</td>
<td>251</td>
<td>288</td>
<td>400</td>
</tr>
<tr>
<td>Carob fruit</td>
<td>Ton</td>
<td>644</td>
<td>116</td>
<td>12</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Empty cone</td>
<td>Ton</td>
<td>849</td>
<td>436</td>
<td>462</td>
<td>562</td>
<td>500</td>
</tr>
</tbody>
</table>

* DPT.

Table 7. Seedlings and Seed Consumptions of Turkey between 1993-2000.

<table>
<thead>
<tr>
<th>YEARS</th>
<th>SEEDLINGS (Million Unit)</th>
<th>Seeds (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>220</td>
<td>95</td>
</tr>
<tr>
<td>1994</td>
<td>204</td>
<td>110</td>
</tr>
<tr>
<td>1995</td>
<td>173</td>
<td>150</td>
</tr>
<tr>
<td>1996</td>
<td>142</td>
<td>320</td>
</tr>
<tr>
<td>1997</td>
<td>160</td>
<td>220</td>
</tr>
<tr>
<td>1998</td>
<td>179</td>
<td>264</td>
</tr>
<tr>
<td>1999</td>
<td>138</td>
<td>150</td>
</tr>
<tr>
<td>2000</td>
<td>125*</td>
<td>145*</td>
</tr>
</tbody>
</table>

TOTAL 1341 1474

DPT.
Table 8. The Production Forecast of Seedlings and seeds.

<table>
<thead>
<tr>
<th>YEARS</th>
<th>PRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SEEDLINGS (Million Unit)</td>
</tr>
<tr>
<td>2001</td>
<td>231</td>
</tr>
<tr>
<td>2002</td>
<td>241</td>
</tr>
<tr>
<td>2003</td>
<td>257</td>
</tr>
<tr>
<td>2004</td>
<td>274</td>
</tr>
<tr>
<td>2005</td>
<td>275</td>
</tr>
<tr>
<td>2006</td>
<td>308</td>
</tr>
<tr>
<td>2007</td>
<td>315</td>
</tr>
<tr>
<td>2008</td>
<td>315</td>
</tr>
<tr>
<td>2009</td>
<td>315</td>
</tr>
<tr>
<td>2010</td>
<td>321</td>
</tr>
<tr>
<td>2011</td>
<td>338</td>
</tr>
<tr>
<td>2012</td>
<td>338</td>
</tr>
<tr>
<td>2013</td>
<td>344</td>
</tr>
<tr>
<td>2014</td>
<td>344</td>
</tr>
<tr>
<td>2015</td>
<td>350</td>
</tr>
<tr>
<td>2016</td>
<td>350</td>
</tr>
<tr>
<td>2017</td>
<td>350</td>
</tr>
<tr>
<td>2018</td>
<td>350</td>
</tr>
<tr>
<td>2019</td>
<td>360</td>
</tr>
<tr>
<td>2020</td>
<td>360</td>
</tr>
<tr>
<td>2021</td>
<td>370</td>
</tr>
<tr>
<td>2022</td>
<td>370</td>
</tr>
<tr>
<td>2023</td>
<td>407</td>
</tr>
<tr>
<td>Total</td>
<td>7483</td>
</tr>
<tr>
<td>2024</td>
<td>376</td>
</tr>
<tr>
<td>2025</td>
<td>376</td>
</tr>
<tr>
<td>2026</td>
<td>376</td>
</tr>
<tr>
<td>2027</td>
<td>376</td>
</tr>
<tr>
<td>2028</td>
<td>376</td>
</tr>
<tr>
<td>2029</td>
<td>376</td>
</tr>
<tr>
<td>2030</td>
<td>376</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10115</td>
</tr>
</tbody>
</table>

*DPT

REFERENCES

Osmanlılarda Ormancılık Eğitimi

Doç. Dr. Şemi İKTÜREN
Gazi Üniversitesi, Kastamonu Orman Fakültesi
Orman Mühendisliği Bölümü

Tassy’nin Birinci Orman Okulu : 1857-1862

Tassy’nin İkinci Orman Okulu : 1866-1868
1866 yılında tekrar çağrılan Prof. Tassy okulun ikincisini açmıştır. Eğitimi Mösyö Simon adında bir öğretim üyesi ile birlikte vermiştir. Okul Maliye Bakanlığına bağlıdır. İki yıllık yoğun eğitim sonunda ikisi
azinlık on mezun vermiştir. Bu mezunlara Orman Müfettişi yetkisi verilmiş fakat bütçe yetersizliğinden atamaları yapılamamıştır.

Simon’un Orman Okulu : 1868-1879

Orman ve Maadin Okulu : 1880-1893

Halkalı Ziraat Mektebi Alısı : 1893-1903

Halka Ziraat ve Ormancılık Mektebi Alısı : 1903-1910
Bu okulun Halkalı Ziraat Mektebi Alisinden farkı, ormancılığın da akademik eğitim olması ve okulun 4 yıla çıkarılmasıdır. Bu okulun mezunlarından altmışı orman teşkilatında görev almıştır.

Birinci Orman Mektebi Alısı : 1910-1917

1) Ormanlara müтеallik ilim ve teknik.
2) Ormanların tahdidi ve haritalarının yapılması.
3) Orman yol ve bina inşaatları.
4) Orman zararlı böcekleri ve mücadele ile av hayvanları.
5) Orman muamelat ve yazıĢmalarını içermektedir.

İkinci Orman Mektebi Alısı : 1917-1923
1916 yılı sonlarında ormancılık uzmanı ve ders nazırı adı verilerek Almanyadan Dr. Haöer getirilir. Onun hazırladığı rapora uyularak okul 3 yıla çıkarılır. Laboratuar ve uygulama alanları için yeni prensipler saptanır. En büyük değişiklik derslerde gerçekleştirilmiştir. Şöyle ki; Okutulan dersler;

1) Genel Botanik, Orman Botanigi, Orman Bitkileri Hastalıkları.
2) Genel Zooloji, Orman Hayvanları, Orman Böcekleri, Balıkçılık ve Avcilik.
3) Genel Kimya ve Toprak Kimyası.
4) Jeoloji, Mineroloji, ve Orman Toprakları Bilgisi.
5) Meteoroloji, Klimatoloji ve Orman Ekolojisi.
6) Topografiya ve Tersimat.
7) Mekanik ve Mukavemet Bilgisi.
8) Orman Yolları ve İnşaatı.
9) Hukuk, Ekonomi, Orman İdare Bilgisi, Orman Politikası.
10) Silvikültür, Orman Amenajmanı, Orman Kuyumculuğu Hesabı ve Statik.
11) Orman İşletme Bilgisi (Odunun Elde Edilmesi, Kullanılması, Odun Teknolojisi, İş Bilgisi ve Orman Tali Hasılatı)
12) Almanca
13) Sağlık Bilgisi

Birinci Dünya Savaşı ve Kurtuluş Savaşı nedeniyle okulun eğitim ve uygulamalarında aksama olmuşsa da iki azınlık 58 mezun vermiştir.

Osmanlı devrinde ormancılık konusundaki yayınlar gözden geçirildiğinde; Türkiye'de ormancılık eğitimini başlatan Prof. L. Tassy'nin Türkiye'de yayınlanmış eseri yoktur. Fakat öğrencilerinden Osman ve Artin efendiler tarafından Tassy’nin Fransızca olarak verdiği Orman Yetiştirilmesi notlarının Türkçe’ye çevrildiği ve basmasına izin alındığı bilinmektedir. Yine talebelerinden Hoca Ali Rıza Efendinin derslerinde düzenlediği 171 sayfalık Fransızca Cours de Silviculture adındaki notlar; Genel ve Orman Botaniği (Anatomi, Fizyoloji ve Sistematik), İklim, Jeoloji ve Silvikültür (Koru, Baltalık ve Koru Baltalık işletme Şekilleri), Odun Teknolojisi, Odun Emprenyesi, Tabii Gençleştirme ve Ağaçlandırma, Orman Mahsullerini Kıymetlendirme bilgilerini kısa bölümler halinde ve şekillerle açıklamalı olarak içermektedir.

İstanbul Üniversitesi Orman Fakültesihocalardan rahmetli Sayın Prof. Dr. Bekir Sıtkı EVCİMEN, İ.Ü. Orman Fakültesi dersinde 1977 yılında
yayınlanmış bir makalesinde, ormançılık hakkında Tasviri Efkar gazetesinin 1862 yılı sayılarında yayınlanan bir seri yazidan bahsetmiş ve bu yazılarda ormançılık hakkında geniş bilgi vermiştir. Bu seri yazılara genel olarak şu şekilde özet olarak bakılabilir: ‘‘Ticarethanei Amire dairesinde kurulan ilk orman okulundan bu yüksek yıl önce diplomasını almış olan efendilerden ve Tercüme Odası katiplerinden Fütuvetli Osman Ragıp efendinin ormanlara ilişkin kaleme aldığı bir konunun özetidir.’’ Osman Ragıp efendinin yazılarnın önsözünde; ‘‘Halkımıza, Silvikültür denilen tarım ve ormançılık tekniği ve işletilmesine ilişkin özet ve toplu bilgi vermek isteğiyle sözü edilen tekniğin dikkate ve özene değer taraflarını bu makalenin sunuçu yazısı çok ilgi çekicidir. ‘‘Ticarethanei Amire dairesinde kurulan ilk orman okulundan bu yüksek yıl önce diplomasını almış olan efendilerden ve Tercüme Odası katiplerinden Fütuvetli Osman Ragıp efendinin ormanlara ilişkin kaleme aldığı bir konunun özetidir.’’ Osman Ragıp efendinin yazılarnın önsözünde; ‘‘Halkımıza, Silvikültür denilen tarım ve ormançılık tekniği ve işletilmesine ilişkin özet ve toplu bilgi vermek isteğiyle sözü edilen tekniğin dikkate ve özene değer tarafları bu makalenin sunuçu yazısı çok ilgi çekicidir. Ticarethanei Amire dairesinde kurulan ilk orman okulundan bu yüksek yıl önce diplomasını almış olan efendilerden ve Tercüme Odası katiplerinden Fütuvetli Osman Ragıp efendinin ormanlara ilişkin kaleme aldığı bir konunun özetidir.’’ Osman Ragıp efendinin yazılarnın önsözünde; ‘‘Halkımıza, Silvikültür denilen tarım ve ormançılık tekniği ve işletilmesine ilişkin özet ve toplu bilgi vermek isteğiyle sözü edilen tekniğin dikkate ve özene değer tarafları bu makalenin sunuçu yazısı çok ilgi çekicidir. Ticarethanei Amire dairesinde kurulan ilk orman okulundan bu yüksek yıl önce diplomasını almış olan efendilerden ve Tercüme Odası katiplerinden Fütuvetli Osman Ragıp efendinin ormanlara ilişkin kaleme aldığı bir konunun özetidir.’’ Osman Ragıp efendinin yazılarnın önsözünde; ‘‘Halkımıza, Silvikültür denilen tarım ve ormançılık tekniği ve işletilmesine ilişkin özet ve toplu bilgi vermek isteğiyle sözü edilen tekniğin dikkate ve özene değer tarafları bu makalenin sunuçu yazısı çok ilgi çekicidir. Ticarethanei Amire dairesinde kurulan ilk orman okulundan bu yüksek yıl önce diplomasını almış olan efendilerden ve Tercüme Odası katiplerinden Fütuvetli Osman Ragıp efendinin ormanlara ilişkin kaleme aldığı bir konunun özetidir.’’ Osman Ragıp efendinin yazılarnın önsözünde; ‘‘Halkımıza, Silvikültür denilen tarım ve ormançılık tekniği ve işletilmesine ilişkin özet ve toplu bilgi vermek isteğiyle sözü edilen tekniğin dikkate ve özene değer tarafları bu makalenin sunuçu yazısı çok ilgi çekicidir. Ticarethanei Amire dairesinde kurulan ilk orman okulundan bu yüksek yıl önce diplomasını almış olan efendilerden ve Tercüme Odası katiplerinden Fütuvetli Osman Ragıp efendinin ormanlara ilişkin kaleme aldığı bir konunun özetidir.’’
Orman Yangınları

Yrd. Doç. Dr. Nuri USLU
Gazi Üniversitesi, Kastamonu Orman Fakültesi
Orman Mühendisliği Bölümü

1. GİRİŞ

Zaman zaman ormanlarda çeşitli nedenlerle yangın olmaktadır. İnsan ateşi keşfetmeden öncede, ormanlarda fırtınanın dalları birbirine sürülmesi veya yıldırım sebebiyle orman yangınları oluyor ve ormanlar yanıyordu. Şüphesiz bundan sonra da devam edecekтир.

1.1. Orman Yangınları Türleri

Orman yangınları ormanlık alanda mineral toprak ile ağaç tepesi arasında mevcut tüm yanıcı maddelerin yanma derecesi ve şekli, dikkate alınarak: Toprak yangını, örtü yangını (Toprak örtüsü) ve tepe yangını (Taç yangını) olarak üçe ayrılır.

Yurdumuz ormanlarında kalın humus ve turbalıkların çok az olmasından dolayı pek olmamaktadır.Ülkemizde örtü ve tepe yangını olmaktadır.
1941-1985 yılları arasında çıkmış bulunan 37.859 adet orman yangınının % 81 örtü veya örtü-tepe yangını, % 19 da sadece tepe yangını olduğu saptanmıştır.

2. ORMAN YANGINLARININ ÇIKIŞ NEDENLERİ

Orman yangınlarının çıkması; genelde bölgenin iklimine, ormanı oluşturan ağaç türlerine ve yörede yaşayanların orman-halk ilişkilerine, sosyo-ekonomik ve kültürel durumlarına bağlıdır. Yani orman yangınlarının çıkmasıında, insan davranışlarının önemli bir yeri vardır.

Ülkemizdeki orman yangınlarının çıkışı nedenlerini incelediğimizde; orman yangınlarına % 99 oranla insanların, % 1 oranla da yıldırımların neden olduğu görülmektedir. Ayrıca ormana atılmış cam işe parçaının da orman yangınlarına neden olduğu bilinmektedir.

2.1 Yangın İstatistikleri

Ülkemizde meydana gelen orman yangınları, uzun bir süreç içerisinde Tablo 1, 2, 3, 4, 5, 6, 7, 8 ve Grafik 1, 2, 3 ve 4’te değerlendirilmektedir.

Görülmektedir ki; bölgesel iklim, ormanı oluşturan ağaç türleri ve toplumun eğitim, sosyo-ekonomik yapısı, orman yangınlarının çıkmasıında önemli ölçüde etkili olmaktadır. Ormanların devletleştirildiği, af yasalarının çıkarıldığı ve genel seçimin yapıldığı yıllarda: orman yangınlarında, hem yangın adedi hem de yanan orman alanı itibariyle büyük artışlar olduğu görülmüştür.

Türkiye, Yunanistan, İtalya, Fransa ve İspanya da çıkan orman yangınları sayısı ve yanan orman alanı bakımından değerlendirildiğinde;

<table>
<thead>
<tr>
<th>Ülke Adı</th>
<th>Orman Varlığı (ha)</th>
<th>Yangın Adedi</th>
<th>Yanan Alan (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Türkiye</td>
<td>20.199.266</td>
<td>6.139</td>
<td>129.086</td>
</tr>
<tr>
<td>İspanya</td>
<td>14.092.000</td>
<td>31.116</td>
<td>1.291.915</td>
</tr>
<tr>
<td>Fransa</td>
<td>13.600.000</td>
<td>32.821</td>
<td>274.096</td>
</tr>
<tr>
<td>İtalya</td>
<td>7.993.000</td>
<td>44.024</td>
<td>541.971</td>
</tr>
<tr>
<td>Yunanistan</td>
<td>8.463.000</td>
<td>5.312</td>
<td>166.945</td>
</tr>
</tbody>
</table>

Ülkemiz ormanlık alan açısından diğer dört ülkeye göre çok daha geniş olmasına rağmen, 1974-1979 yılları arasında çıkan orman yangını adedi, İspanya ve Fransa’ya göre 1/5 İtalya’ya göre 1/7 seviyesindedir. Yanan alana göre, İspanya’nın 1/10, Fransa’nın ½, İtalya’nın ¼, Yunanistan’a eşit seviyededir.

3. YANGIN TEHLİKESİNE ETKİLEYEN KOŞULLAR

3.1. Hava Durumu
Ülkemiz coğrafi konumu itibariyle Akdeniz havzasında yer almaktadır. Ormanlarımızın Kahramanmaraş’tan başlayıp Akdeniz ve Ege denizini takiben İstanbul’a kadar uzanan 1700 km.lik sahil bandının 160 km. derinlikteki bölümü, orman yangınları açısından çok büyük bir hassasiyet göstermektedir.

Yani orman alanlarımızın % 43’ü orman yangınları açısından riskli bölgederdir. Bu bölgelerde genelde Akdeniz İklimi hüküm sürmektedir. Bu nedenle, İlkbahar, yaz ve sonbahar aylarında hava sıcaklığı yüksek nispi nem oranı da düşüktür. Bu durum yanmayi kolaylaştırmaktadır. Yaz...
ayılarda özellikle sıcaklığın çok yüksek olması, karayla deniz arasında oluşan hava basınç farklılığı günün kararmasıyla denizlerden karalara doğru hava akımı hızlandırmaktadır. Böylece öğleden sonra ormanlarda başlayan herhangi bir yangın süratle büyümekte ve söndürülmesinde güçlük çekilmektedir.

3.2. Ormanı Oluşturan Türler
Ormanlarınımızın % 53.4 İbreli, %46.36 da yapraklı ormanlardan oluşmaktadır. Tür bazında değerlendirdiğimizde:

<table>
<thead>
<tr>
<th>Ağaç Türleri</th>
<th>Çam</th>
<th>Sedir</th>
<th>Göknar</th>
<th>Ladin</th>
<th>Meşe</th>
<th>Kayın</th>
<th>Diğerleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>68</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>13</td>
<td>4</td>
</tr>
</tbody>
</table>

Orman yangınları yönünden en riskli bölgelerimiz; Akdeniz, Ege, Marmara’dır. Bu bölgelerdeki ormanlarımızın çoğunlukla çam, sedir, göknar, kayın ve maki türlerinden oluşmaktadır. Bu ormanlar her mevsimde ve özellikle yangın sezonlarında orman yangınları açısından büyük tehlike arz etmektedir.

3.3. Yangın Sezonu Süresi

3.4. Orman İşletmeciliği
Orman işletmeciliği uygulamaları: bölgenin iklimi, topografik yapısı, coğrafik konumu, orman ağac türleri, ve yol ağ göz önünde bulundurularak, ormançılık ilmine uygun bir şekilde gerçekleştirilmelidir. Ormanlarda uygulanan ormançılık faaliyetleri tekniğe uygun ve temiz işletmecilik şeklinde olmalıdır. Orman içinde ve yol kenarlarında üretim artıklarının olması da orman yangınları yönünden tehlkeyi artırmaktadır. Ayrıca orman içi yol kenarlarında 5-10 metre genişliğinde süceyrat temizlenmeli, içeriye orman içine doğru seyreltme ve budama yapılmalıdır.
4. ORMAN YANGINLARININ ÖNLENMESİ

Orman yangınlarının önlenmesi için öncelikle ormanda kontrolsüz hiçbir ateşin yakılmaması gerekir. Orman yangınının çıkması için gerekli her türlü tedbir alınmalıdır. Ancak hastalıktan önce sağlıklı, fakirleşmeden önce servetimizi koruyamadığımız gibi orman yangınları çıkmadan önce ormanların korunması için yangın öncesinde “orman yangınlardan korunma” prensibi üzerinde yetenece durulmamaktadır.

4.1 Yangın Öncesi Tedbirler

Tüm dünyada olduğu gibi Türkiye’de de orman yangınlardan korunma bakımından en önemli husus yangının çıkmasına engel olmaktadır. Yangın olmaması için; orman halk ilişkilerinde veya orman içi ve civarında yaşayan halkın faaliyetlerinde ve davranışlarında yangına sebep olacak bir ortam oluşturulmamalıdır. Ülkemizdeki orman yangınlarına sebep olan % 98.8 oranında insan olduğu bir gerçek. Yangınlar insanların ihmal veya kasıtları sonucu olmaktadır. O halde insanların eğitilmesi ve sosyo-ekonomik durumların iyileştirilmesi büyük önem taşımaktadır.

4.1.1 Eğitim

Ormana yaklaştılan bölgelerde, yollarda ve orman köylerinde halkın rahatlıkla göre bileceğini mekanlara orman yangınları konusunda uyarıç ve orman sevgisini sağlayacağı ilan ve reklamlar konulmalıdır. Köşla, okul ve camilerde orman koruma ve özellikle orman yangınlarına yönelik eğitime ağırlık verilmelidir (ÇANAKÇIOĞLU, 1987).
4.1.2 Halk Orman İlişkilerini İyileştirmek
Orman içi ve civarı köylere istihdam yaratıcı yatırımların yapılması sağlanmalıdır. Orman kадastrosu, öncelikle arazi değeri yüksek olan bölgelerde kısa sürede bitirilmeli ve tekrar kadastro çalışmaları ile rant elde edilmesi beklenmesi ortadan kaldırılmıştır.

4.1.3. Ormanların Korunmasında Orman İdaresince Yapılacak Teknik Ormanlık Faaliyetleri

4.1.3.1. Silvikültürel Çalışmalar
Ormanlarda yangınların çıkamaması için bakım ve üretim işlerinde silvikültürel esaslar uygulanmalıdır. Selüloş üretiminde meşcereler yetiştirilmeli, ormanda her çağda yapılması gereken bakım zamanında yapılmalı, temiz bir işletmecilik uygulanmalıdır.

4.1.3.2. Yangın Emniyet Yol ve Şeritleri
Özellikle yangına hassas bölgelerdeki ormanlarda yangın emniyet yol ve şeritleri yapılmalıdır. Ormanlarımızda 1997 yılı sonu itibariyle toplam 16208 km. yangın emniyet yolu yapılmış ve bunların her yıl yangın mevsiminden önce bakım sonucunda yapılmaktadır.

4.1.3.3. Gözetleme
Ülkemiz ormanları, yangın sezonunda 775 adet gözetleme kulesinden yangın sezonu süresince gözetlenmektedir. Yangın kulelerinden görülememeyen orman alanlarının görülmesi için, gerekli kuleler yapılmalıdır.
4.1.3.4. Haberleşme

4.1.3.5. İlk Müdahale Ekipleri
Orman yangınları ile mücadelede başarılı olmak ve çıkan yangınların büyümeden söndürülmesini sağlamak için 702 adet sabit ve 11 adet seyyar olarak üzere 713 adet ilk müdahale ekibi ormanlarımızda çeşitli yerlerde bekletilmektedir.

5. ORMAN YANGINLARIYLA SAVAŞ

6. SONUÇ

Ormanların devamılığını etkileyen en önemli unsurlardan biri olan, orman yangınları; insan varlığı, ormana ve ağaca olan ihtiyacı ve Akdeniz iklim koşullarında her zaman çıkaktır. Önemli olan: orman yangınının hiç çıkmamasını veya yanan orman alanının en küçük miktarda kalmasını sağlamaktır.
Grafik 1: Türkiye’de 1988-1997 Arasındaki 10 Yıllık Dönemde Çıkan Orman Yangınlarının Adet Olarak Yıllara Dağılımı

Kaynak: Orman Yangınlarıyla Mücadele Faaliyetleri 1997 yılı Değerlendirme Raporu

Grafik 2: Türkiye’de 1988-1997 Arasındaki 10 Yıllık Dönemde Çıkan Orman Yangınlarının Alan Olarak Yıllara Dağılımı

Kaynak: Orman Yangınlarıyla Mücadele Faaliyetleri 1997 yılı Değerlendirme Raporu
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adana</td>
<td>241</td>
<td>550</td>
<td>556</td>
<td>834</td>
<td>977</td>
<td>793</td>
<td>1591</td>
<td>224</td>
<td>1263</td>
<td>196</td>
<td>7225</td>
<td>722</td>
<td>5,8</td>
<td>5</td>
</tr>
<tr>
<td>Adapazar</td>
<td>226</td>
<td>1199</td>
<td>553</td>
<td>60</td>
<td>357</td>
<td>1076</td>
<td>1450</td>
<td>156</td>
<td>186</td>
<td>166</td>
<td>5429</td>
<td>543</td>
<td>4,4</td>
<td>7</td>
</tr>
<tr>
<td>Amasya</td>
<td>16</td>
<td>93</td>
<td>35</td>
<td>81</td>
<td>107</td>
<td>84</td>
<td>375</td>
<td>42</td>
<td>48</td>
<td>109</td>
<td>990</td>
<td>99</td>
<td>0,8</td>
<td>18</td>
</tr>
<tr>
<td>Ankara</td>
<td>97</td>
<td>48</td>
<td>109</td>
<td>283</td>
<td>49</td>
<td>217</td>
<td>125</td>
<td>29</td>
<td>49</td>
<td>20</td>
<td>1026</td>
<td>103</td>
<td>0,8</td>
<td>16</td>
</tr>
<tr>
<td>Antalya</td>
<td>2075</td>
<td>1386</td>
<td>1131</td>
<td>1026</td>
<td>2343</td>
<td>1086</td>
<td>2246</td>
<td>320</td>
<td>309</td>
<td>2157</td>
<td>14079</td>
<td>1408</td>
<td>11,3</td>
<td>3</td>
</tr>
<tr>
<td>Artvin</td>
<td>1</td>
<td>5</td>
<td>32</td>
<td>9</td>
<td>20</td>
<td>31</td>
<td>43</td>
<td>22</td>
<td>4</td>
<td>195</td>
<td>20</td>
<td>20</td>
<td>0,2</td>
<td>26</td>
</tr>
<tr>
<td>Balıkesir</td>
<td>303</td>
<td>581</td>
<td>2436</td>
<td>269</td>
<td>681</td>
<td>312</td>
<td>245</td>
<td>166</td>
<td>204</td>
<td>147</td>
<td>5344</td>
<td>534</td>
<td>4,3</td>
<td>8</td>
</tr>
<tr>
<td>Bolu</td>
<td>50</td>
<td>98</td>
<td>70</td>
<td>6</td>
<td>54</td>
<td>115</td>
<td>134</td>
<td>15</td>
<td>14</td>
<td>8</td>
<td>564</td>
<td>56</td>
<td>0,4</td>
<td>22</td>
</tr>
<tr>
<td>Bursa</td>
<td>629</td>
<td>1043</td>
<td>525</td>
<td>105</td>
<td>664</td>
<td>704</td>
<td>347</td>
<td>86</td>
<td>58</td>
<td>29</td>
<td>4190</td>
<td>419</td>
<td>3,4</td>
<td>11</td>
</tr>
<tr>
<td>Çanakkale</td>
<td>2280</td>
<td>905</td>
<td>1393</td>
<td>607</td>
<td>817</td>
<td>708</td>
<td>4344</td>
<td>365</td>
<td>815</td>
<td>198</td>
<td>12432</td>
<td>1243</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Denizli</td>
<td>960</td>
<td>329</td>
<td>374</td>
<td>242</td>
<td>349</td>
<td>250</td>
<td>964</td>
<td>204</td>
<td>335</td>
<td>118</td>
<td>4125</td>
<td>412</td>
<td>3,3</td>
<td>12</td>
</tr>
<tr>
<td>Elazığ</td>
<td>1160</td>
<td>460</td>
<td>121</td>
<td>309</td>
<td>396</td>
<td>3</td>
<td>490</td>
<td>9</td>
<td>3297</td>
<td>330</td>
<td>27</td>
<td>27</td>
<td>2,7</td>
<td>13</td>
</tr>
<tr>
<td>Erzincan</td>
<td>24</td>
<td>1</td>
<td>1</td>
<td>36</td>
<td>3</td>
<td>12</td>
<td>17</td>
<td>51</td>
<td>145</td>
<td>15</td>
<td>100</td>
<td>10</td>
<td>0,1</td>
<td>27</td>
</tr>
<tr>
<td>Eskişehir</td>
<td>50</td>
<td>92</td>
<td>48</td>
<td>47</td>
<td>157</td>
<td>138</td>
<td>339</td>
<td>60</td>
<td>57</td>
<td>16</td>
<td>1004</td>
<td>100</td>
<td>0,8</td>
<td>19</td>
</tr>
<tr>
<td>Giresun</td>
<td>62</td>
<td>14</td>
<td>61</td>
<td>7</td>
<td>36</td>
<td>40</td>
<td>92</td>
<td>25</td>
<td>108</td>
<td>9</td>
<td>454</td>
<td>45</td>
<td>0,4</td>
<td>25</td>
</tr>
<tr>
<td>Isparta</td>
<td>54</td>
<td>34</td>
<td>29</td>
<td>301</td>
<td>271</td>
<td>162</td>
<td>160</td>
<td>77</td>
<td>205</td>
<td>18</td>
<td>1311</td>
<td>131</td>
<td>1,0</td>
<td>14</td>
</tr>
<tr>
<td>İstanbul</td>
<td>292</td>
<td>673</td>
<td>340</td>
<td>200</td>
<td>693</td>
<td>2757</td>
<td>407</td>
<td>79</td>
<td>147</td>
<td>31</td>
<td>5799</td>
<td>580</td>
<td>4,7</td>
<td>6</td>
</tr>
<tr>
<td>İzmir</td>
<td>3392</td>
<td>1266</td>
<td>1244</td>
<td>491</td>
<td>1688</td>
<td>1553</td>
<td>5147</td>
<td>814</td>
<td>762</td>
<td>216</td>
<td>16573</td>
<td>1657</td>
<td>13,3</td>
<td>2</td>
</tr>
<tr>
<td>K. Marash</td>
<td>187</td>
<td>470</td>
<td>428</td>
<td>1166</td>
<td>219</td>
<td>750</td>
<td>462</td>
<td>780</td>
<td>214</td>
<td>150</td>
<td>4826</td>
<td>483</td>
<td>3,9</td>
<td>9</td>
</tr>
<tr>
<td>Kastamonu</td>
<td>18</td>
<td>115</td>
<td>77</td>
<td>34</td>
<td>151</td>
<td>83</td>
<td>315</td>
<td>9</td>
<td>224</td>
<td>23</td>
<td>1049</td>
<td>105</td>
<td>0,8</td>
<td>15</td>
</tr>
<tr>
<td>Konya</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>64</td>
<td>37</td>
<td>36</td>
<td>138</td>
<td>14</td>
<td>106</td>
<td>40</td>
<td>478</td>
<td>48</td>
<td>0,4</td>
<td>24</td>
</tr>
<tr>
<td>Kütahya</td>
<td>209</td>
<td>164</td>
<td>81</td>
<td>27</td>
<td>81</td>
<td>159</td>
<td>100</td>
<td>84</td>
<td>96</td>
<td>17</td>
<td>1024</td>
<td>102</td>
<td>0,8</td>
<td>17</td>
</tr>
<tr>
<td>Mersin</td>
<td>789</td>
<td>530</td>
<td>519</td>
<td>218</td>
<td>428</td>
<td>887</td>
<td>112</td>
<td>275</td>
<td>61</td>
<td>540</td>
<td>4379</td>
<td>438</td>
<td>3,5</td>
<td>10</td>
</tr>
<tr>
<td>Muğla</td>
<td>5060</td>
<td>2189</td>
<td>2535</td>
<td>1171</td>
<td>1500</td>
<td>1464</td>
<td>1277</td>
<td>656</td>
<td>8966</td>
<td>1720</td>
<td>26538</td>
<td>2654</td>
<td>21,3</td>
<td>1</td>
</tr>
<tr>
<td>Mersin</td>
<td>17</td>
<td>40</td>
<td>11</td>
<td>10</td>
<td>117</td>
<td>42</td>
<td>111</td>
<td>58</td>
<td>50</td>
<td>32</td>
<td>428</td>
<td>49</td>
<td>0,4</td>
<td>23</td>
</tr>
<tr>
<td>Trabzon</td>
<td>14</td>
<td>49</td>
<td>1</td>
<td>9</td>
<td>105</td>
<td>50</td>
<td>193</td>
<td>83</td>
<td>290</td>
<td>804</td>
<td>80</td>
<td>80</td>
<td>0,6</td>
<td>20</td>
</tr>
<tr>
<td>Zonguldak</td>
<td>11</td>
<td>218</td>
<td>79</td>
<td>6</td>
<td>34</td>
<td>203</td>
<td>111</td>
<td>1</td>
<td>33</td>
<td>2</td>
<td>698</td>
<td>70</td>
<td>0,6</td>
<td>21</td>
</tr>
<tr>
<td>Toplam</td>
<td>18210</td>
<td>12610</td>
<td>13006</td>
<td>7596</td>
<td>12312</td>
<td>13734</td>
<td>20862</td>
<td>14902</td>
<td>14022</td>
<td>6316</td>
<td>134800</td>
<td>12468</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

Kaynak: Orman Yangınlarıyla Mücadele Faaliyetleri 1997 yılı Değerlendirme Raporu

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adana</td>
<td>29</td>
<td>59</td>
<td>67</td>
<td>87</td>
<td>99</td>
<td>161</td>
<td>206</td>
<td>84</td>
<td>94</td>
<td>69</td>
<td>955</td>
<td>95</td>
<td>5,0</td>
</tr>
<tr>
<td>Adapazarı</td>
<td>27</td>
<td>82</td>
<td>57</td>
<td>12</td>
<td>44</td>
<td>98</td>
<td>178</td>
<td>40</td>
<td>29</td>
<td>37</td>
<td>604</td>
<td>60</td>
<td>3,2</td>
</tr>
<tr>
<td>Amasya</td>
<td>7</td>
<td>27</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>19</td>
<td>105</td>
<td>23</td>
<td>35</td>
<td>26</td>
<td>281</td>
<td>28</td>
<td>1,5</td>
</tr>
<tr>
<td>Ankara</td>
<td>20</td>
<td>25</td>
<td>36</td>
<td>61</td>
<td>33</td>
<td>76</td>
<td>100</td>
<td>39</td>
<td>45</td>
<td>29</td>
<td>464</td>
<td>46</td>
<td>2,4</td>
</tr>
<tr>
<td>Antalya</td>
<td>226</td>
<td>234</td>
<td>260</td>
<td>239</td>
<td>263</td>
<td>187</td>
<td>122</td>
<td>98</td>
<td>105</td>
<td>101</td>
<td>1835</td>
<td>183</td>
<td>9,7</td>
</tr>
<tr>
<td>Artvin</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>45</td>
<td>5</td>
<td>0,3</td>
<td>27</td>
</tr>
<tr>
<td>Balıkesir</td>
<td>90</td>
<td>67</td>
<td>83</td>
<td>64</td>
<td>102</td>
<td>111</td>
<td>163</td>
<td>122</td>
<td>95</td>
<td>89</td>
<td>986</td>
<td>99</td>
<td>5,2</td>
</tr>
<tr>
<td>Bolu</td>
<td>10</td>
<td>27</td>
<td>22</td>
<td>5</td>
<td>21</td>
<td>46</td>
<td>123</td>
<td>21</td>
<td>19</td>
<td>12</td>
<td>306</td>
<td>31</td>
<td>1,6</td>
</tr>
<tr>
<td>Bursa</td>
<td>67</td>
<td>78</td>
<td>56</td>
<td>32</td>
<td>68</td>
<td>114</td>
<td>110</td>
<td>51</td>
<td>51</td>
<td>31</td>
<td>658</td>
<td>66</td>
<td>3,5</td>
</tr>
<tr>
<td>Çanakkale</td>
<td>68</td>
<td>38</td>
<td>68</td>
<td>49</td>
<td>109</td>
<td>114</td>
<td>108</td>
<td>56</td>
<td>65</td>
<td>76</td>
<td>751</td>
<td>75</td>
<td>4,0</td>
</tr>
<tr>
<td>Denizli</td>
<td>97</td>
<td>97</td>
<td>88</td>
<td>99</td>
<td>116</td>
<td>154</td>
<td>144</td>
<td>109</td>
<td>77</td>
<td>51</td>
<td>1032</td>
<td>103</td>
<td>5,5</td>
</tr>
<tr>
<td>Elazığ</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>16</td>
<td>18</td>
<td>13</td>
<td>33</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>126</td>
<td>13</td>
<td>0,7</td>
</tr>
<tr>
<td>Erzurum</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>12</td>
<td>46</td>
<td>5</td>
<td>5</td>
<td>0,3</td>
<td>26</td>
</tr>
<tr>
<td>Eskişehir</td>
<td>14</td>
<td>13</td>
<td>8</td>
<td>19</td>
<td>23</td>
<td>61</td>
<td>59</td>
<td>33</td>
<td>38</td>
<td>21</td>
<td>289</td>
<td>29</td>
<td>1,5</td>
</tr>
<tr>
<td>Giresun</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>22</td>
<td>4</td>
<td>17</td>
<td>5</td>
<td>7</td>
<td>0,4</td>
</tr>
<tr>
<td>İsparta</td>
<td>26</td>
<td>27</td>
<td>21</td>
<td>35</td>
<td>57</td>
<td>57</td>
<td>76</td>
<td>70</td>
<td>44</td>
<td>31</td>
<td>444</td>
<td>44</td>
<td>2,3</td>
</tr>
<tr>
<td>İstanbul</td>
<td>36</td>
<td>52</td>
<td>61</td>
<td>60</td>
<td>131</td>
<td>219</td>
<td>182</td>
<td>72</td>
<td>106</td>
<td>53</td>
<td>972</td>
<td>97</td>
<td>5,2</td>
</tr>
<tr>
<td>İzmir</td>
<td>182</td>
<td>173</td>
<td>259</td>
<td>182</td>
<td>259</td>
<td>247</td>
<td>335</td>
<td>217</td>
<td>173</td>
<td>116</td>
<td>2143</td>
<td>214</td>
<td>11,4</td>
</tr>
<tr>
<td>K. Maraş</td>
<td>61</td>
<td>80</td>
<td>84</td>
<td>82</td>
<td>86</td>
<td>103</td>
<td>152</td>
<td>114</td>
<td>103</td>
<td>106</td>
<td>971</td>
<td>97</td>
<td>5,2</td>
</tr>
<tr>
<td>Kastamonu</td>
<td>17</td>
<td>30</td>
<td>24</td>
<td>8</td>
<td>39</td>
<td>44</td>
<td>136</td>
<td>15</td>
<td>42</td>
<td>52</td>
<td>407</td>
<td>41</td>
<td>2,2</td>
</tr>
<tr>
<td>Konya</td>
<td>15</td>
<td>18</td>
<td>19</td>
<td>17</td>
<td>10</td>
<td>13</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>14</td>
<td>181</td>
<td>18</td>
<td>1,0</td>
</tr>
<tr>
<td>Kütahya</td>
<td>81</td>
<td>110</td>
<td>59</td>
<td>43</td>
<td>69</td>
<td>103</td>
<td>133</td>
<td>75</td>
<td>57</td>
<td>66</td>
<td>796</td>
<td>80</td>
<td>4,3</td>
</tr>
<tr>
<td>Mersin</td>
<td>48</td>
<td>69</td>
<td>88</td>
<td>39</td>
<td>91</td>
<td>159</td>
<td>123</td>
<td>99</td>
<td>73</td>
<td>64</td>
<td>853</td>
<td>85</td>
<td>4,5</td>
</tr>
<tr>
<td>Muğla</td>
<td>224</td>
<td>263</td>
<td>304</td>
<td>267</td>
<td>395</td>
<td>357</td>
<td>388</td>
<td>341</td>
<td>261</td>
<td>239</td>
<td>3039</td>
<td>304</td>
<td>16,1</td>
</tr>
<tr>
<td>Sinop</td>
<td>11</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>17</td>
<td>15</td>
<td>56</td>
<td>22</td>
<td>28</td>
<td>11</td>
<td>176</td>
<td>18</td>
<td>1,0</td>
</tr>
<tr>
<td>Trabzon</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>18</td>
<td>14</td>
<td>12</td>
<td>11</td>
<td>75</td>
<td>7</td>
<td>0,4</td>
<td>25</td>
</tr>
<tr>
<td>Zonguldak</td>
<td>4</td>
<td>22</td>
<td>22</td>
<td>6</td>
<td>35</td>
<td>53</td>
<td>105</td>
<td>6</td>
<td>35</td>
<td>8</td>
<td>296</td>
<td>30</td>
<td>1,6</td>
</tr>
<tr>
<td>Toplam</td>
<td>1372</td>
<td>1633</td>
<td>1725</td>
<td>1448</td>
<td>2110</td>
<td>2547</td>
<td>5221</td>
<td>1768</td>
<td>1645</td>
<td>1339</td>
<td>18808</td>
<td>1881</td>
<td>100</td>
</tr>
</tbody>
</table>

Kaynak: Orman Yangınlarıyla Mücadele Faaliyetleri 1997 yılı Değerlendirme Raporu
Grafik 3: 1988-1997 Yılları İtibarı İle Orman Bölge Müdürlüklerinin Yıllık Ortalama Yangın Adetleri

Tablo 5: Orman Yangınlarının Bölgelere Göre Dağılımı

<table>
<thead>
<tr>
<th>BÖLGELER</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ege Bölgesi</td>
<td>41</td>
</tr>
<tr>
<td>Akdeniz Bölgesi</td>
<td>24</td>
</tr>
<tr>
<td>Marmara Bölgesi</td>
<td>22</td>
</tr>
<tr>
<td>Diğer Bölgeler</td>
<td>8</td>
</tr>
</tbody>
</table>

Tablo 6: Türkiye’de 1960-1985 Yıllarda Yangın Çıktığı Ağaç Toplulukları ve Yangın Adedi Oranları

<table>
<thead>
<tr>
<th>Yangının Çıktığı Bitki Topluluğu</th>
<th>Yangın Adedi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çam</td>
<td>71.8</td>
</tr>
<tr>
<td>Diğer İşge Yapraklılar</td>
<td>2.6</td>
</tr>
<tr>
<td>İşge Yapraklı + Yapraklı</td>
<td>2.3</td>
</tr>
<tr>
<td>Meşe</td>
<td>6.0</td>
</tr>
<tr>
<td>Maki</td>
<td>2.4</td>
</tr>
<tr>
<td>Kayın</td>
<td>0.5</td>
</tr>
<tr>
<td>Yapraklı Karışık</td>
<td>1.0</td>
</tr>
<tr>
<td>Enkaz-Istiflenmiş Odun Vb.</td>
<td>13.4</td>
</tr>
<tr>
<td>Toplam</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Tablo 7: Ülkelere Bazıda 1979-1983 yıllarında Nedeni Bilinen ve Bilinmeyen Orman Yangın Adetleri

<table>
<thead>
<tr>
<th>Ulkeler</th>
<th>Toplam</th>
<th>Nedeni bilinen</th>
<th>Nedeni bilinmeyen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fransa</td>
<td>5507</td>
<td>4174</td>
<td>1333</td>
</tr>
<tr>
<td>İspanya</td>
<td>7167</td>
<td>4241</td>
<td>2928</td>
</tr>
<tr>
<td>İtalya</td>
<td>10325</td>
<td>9359</td>
<td>966</td>
</tr>
<tr>
<td>Türkiye</td>
<td>1300</td>
<td>646</td>
<td>654</td>
</tr>
<tr>
<td>Yunanistan</td>
<td>1076</td>
<td>747</td>
<td>329</td>
</tr>
<tr>
<td>A.B.D.</td>
<td>118281</td>
<td>118281</td>
<td>2029</td>
</tr>
</tbody>
</table>

Grafik 4: 1988-1997 Yılları İtibari ile Bölgelerin Yıllık Ortalama Yanan Alanları
Tablo 8: Türkiye’de 1937-1997 Yılları Arasında Meydana Gelen Orman Yangınları

<table>
<thead>
<tr>
<th>Yıl</th>
<th>Yangın Adedi</th>
<th>Yanan Saha</th>
<th>Kümülatif Toplam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1937</td>
<td>544</td>
<td>13564</td>
<td>13564</td>
</tr>
<tr>
<td>1938</td>
<td>596</td>
<td>14516</td>
<td>28080</td>
</tr>
<tr>
<td>1939</td>
<td>510</td>
<td>12304</td>
<td>40384</td>
</tr>
<tr>
<td>1940</td>
<td>419</td>
<td>18732</td>
<td>59116</td>
</tr>
<tr>
<td>1941</td>
<td>850</td>
<td>33415</td>
<td>92531</td>
</tr>
<tr>
<td>1942</td>
<td>740</td>
<td>73210</td>
<td>165741</td>
</tr>
<tr>
<td>1943</td>
<td>779</td>
<td>46723</td>
<td>212464</td>
</tr>
<tr>
<td>1944</td>
<td>536</td>
<td>39315</td>
<td>251779</td>
</tr>
<tr>
<td>1945</td>
<td>1169</td>
<td>165307</td>
<td>417086</td>
</tr>
<tr>
<td>1946</td>
<td>1023</td>
<td>125115</td>
<td>342201</td>
</tr>
<tr>
<td>1947</td>
<td>868</td>
<td>59999</td>
<td>602200</td>
</tr>
<tr>
<td>1948</td>
<td>630</td>
<td>32463</td>
<td>634663</td>
</tr>
<tr>
<td>1949</td>
<td>738</td>
<td>36502</td>
<td>61165</td>
</tr>
<tr>
<td>1950</td>
<td>987</td>
<td>6968</td>
<td>740233</td>
</tr>
<tr>
<td>1951</td>
<td>828</td>
<td>18884</td>
<td>759177</td>
</tr>
<tr>
<td>1952</td>
<td>1282</td>
<td>62271</td>
<td>821388</td>
</tr>
<tr>
<td>1953</td>
<td>654</td>
<td>17596</td>
<td>838984</td>
</tr>
<tr>
<td>1954</td>
<td>1126</td>
<td>35380</td>
<td>874564</td>
</tr>
<tr>
<td>1955</td>
<td>878</td>
<td>27773</td>
<td>902337</td>
</tr>
<tr>
<td>1956</td>
<td>1118</td>
<td>38983</td>
<td>941320</td>
</tr>
<tr>
<td>1957</td>
<td>779</td>
<td>28634</td>
<td>969954</td>
</tr>
<tr>
<td>1958</td>
<td>725</td>
<td>26862</td>
<td>996816</td>
</tr>
<tr>
<td>1959</td>
<td>436</td>
<td>8070</td>
<td>1004886</td>
</tr>
<tr>
<td>1960</td>
<td>504</td>
<td>8359</td>
<td>1013445</td>
</tr>
<tr>
<td>1961</td>
<td>620</td>
<td>9127</td>
<td>1022572</td>
</tr>
<tr>
<td>1962</td>
<td>717</td>
<td>10059</td>
<td>1032631</td>
</tr>
<tr>
<td>1963</td>
<td>455</td>
<td>5178</td>
<td>1037809</td>
</tr>
<tr>
<td>1964</td>
<td>768</td>
<td>13348</td>
<td>1051157</td>
</tr>
<tr>
<td>1965</td>
<td>415</td>
<td>3945</td>
<td>1055102</td>
</tr>
<tr>
<td>1966</td>
<td>433</td>
<td>6664</td>
<td>1061766</td>
</tr>
<tr>
<td>1967</td>
<td>473</td>
<td>8441</td>
<td>1070207</td>
</tr>
<tr>
<td>1968</td>
<td>387</td>
<td>7540</td>
<td>1077747</td>
</tr>
<tr>
<td>1969</td>
<td>714</td>
<td>16354</td>
<td>1094101</td>
</tr>
<tr>
<td>1970</td>
<td>790</td>
<td>15019</td>
<td>1109120</td>
</tr>
<tr>
<td>1971</td>
<td>651</td>
<td>7532</td>
<td>1116652</td>
</tr>
<tr>
<td>1972</td>
<td>440</td>
<td>6913</td>
<td>1123565</td>
</tr>
<tr>
<td>1973</td>
<td>1208</td>
<td>17002</td>
<td>1140567</td>
</tr>
<tr>
<td>1974</td>
<td>769</td>
<td>14743</td>
<td>1155310</td>
</tr>
<tr>
<td>1975</td>
<td>811</td>
<td>17515</td>
<td>1172825</td>
</tr>
<tr>
<td>1976</td>
<td>702</td>
<td>5171</td>
<td>1177996</td>
</tr>
<tr>
<td>1977</td>
<td>1615</td>
<td>43076</td>
<td>1221072</td>
</tr>
<tr>
<td>1978</td>
<td>1122</td>
<td>13235</td>
<td>1234307</td>
</tr>
<tr>
<td>1979</td>
<td>1300</td>
<td>34132</td>
<td>1268439</td>
</tr>
<tr>
<td>1980</td>
<td>1092</td>
<td>11248</td>
<td>1278687</td>
</tr>
<tr>
<td>1981</td>
<td>982</td>
<td>5470</td>
<td>1284157</td>
</tr>
<tr>
<td>1982</td>
<td>950</td>
<td>4018</td>
<td>1288175</td>
</tr>
<tr>
<td>1983</td>
<td>968</td>
<td>3556</td>
<td>1291731</td>
</tr>
<tr>
<td>1984</td>
<td>1433</td>
<td>7358</td>
<td>1299089</td>
</tr>
<tr>
<td>1985</td>
<td>1793</td>
<td>26006</td>
<td>1325095</td>
</tr>
<tr>
<td>1986</td>
<td>1526</td>
<td>11037</td>
<td>1336132</td>
</tr>
</tbody>
</table>
Tablo 8(Devam): Türkiye’de 1937-1997 Yılları Arasında Meydana Gelen Orman Yangınları

<table>
<thead>
<tr>
<th>Yılı</th>
<th>Yangın Adedi</th>
<th>Yanan Saha</th>
<th>Kümülatif Toplam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>1310</td>
<td>10746</td>
<td>1346878</td>
</tr>
<tr>
<td>1988</td>
<td>1372</td>
<td>18210</td>
<td>1365088</td>
</tr>
<tr>
<td>1989</td>
<td>1633</td>
<td>12610</td>
<td>1377698</td>
</tr>
<tr>
<td>1990</td>
<td>1725</td>
<td>13000</td>
<td>1390698</td>
</tr>
<tr>
<td>1991</td>
<td>1448</td>
<td>7590</td>
<td>1399288</td>
</tr>
<tr>
<td>1992</td>
<td>2110</td>
<td>12312</td>
<td>1410600</td>
</tr>
<tr>
<td>1993</td>
<td>2547</td>
<td>13734</td>
<td>1424334</td>
</tr>
<tr>
<td>1994</td>
<td>3221</td>
<td>20982</td>
<td>1445316</td>
</tr>
<tr>
<td>1995</td>
<td>1768</td>
<td>4790</td>
<td>1450106</td>
</tr>
<tr>
<td>1996</td>
<td>1645</td>
<td>14922</td>
<td>1465028</td>
</tr>
<tr>
<td>1997</td>
<td>1339</td>
<td>6316</td>
<td>1471344</td>
</tr>
<tr>
<td>Toplam</td>
<td>61771</td>
<td>1471344</td>
<td>1471344</td>
</tr>
</tbody>
</table>

Kaynak: Orman Yangınlarıla Mücadele Faaliyetleri 1997 yılı Değerlendirme Raporları

KAYNAKLAR

1) Çanakçıoğlu, H. 1985, Orman Koruma Ders Kitabı
2) Anonim, 1987, Türkiye Ormanlarının Yangınlardan Koruma Semineri
3) Anonim, 1989, Orman Yangınlarıyla Savaş Semineri
Fidan Üretiminde Topraksız Kültür Ortampı Alternatifleri

Yrd. Doç. Dr. Sezgin AYAN
Gazi Üniversitesi, Kastamonu Orman Fakültesi
Orman Mühendisliği Bölümü

1. GİRİŞ

Bitkisel üretimin temel öğesi olan toprak, bitkilerin tutunma yeri ve ana besin kaynağıdır. İçerisindeki su ve hava ile tohumların çimlenmesi ve köklerin gelişmesi için uygun bir ortam oluşturur. Ayrıca besin maddelerini ve suyu hafif bir güçle bağlayarak köklerin bunları kolayca almasına yardım eder. Bütün bu özellikler toprağı, binlerce yıldan beri bitkisel üretimde ideal ve doğal yetiştirmeye ortamı yapmıştır.

Bununla birlikte sera yetiştiriciliği gibi entansif yetiştiricilik uygulamalarında topraktan kaynaklanan önemli sorunlarla karşılaşılmaktadır. Uzun yıllar aynı ürünün yetiştirilmesi, toprağın yüksek verim nedeniyle fazla sömürülmesi, yoğun gübre kullanımı gibi nedenlerden kaynaklanan bu sorunların başında;

1. Toprak yorgunluğuna bağlı olarak verimlilikin azalması,
2. Toprakta bulunan hastalık ve zararlı yoğunluğunun artması,
3. Tuzlanma veya besin maddesi dengesinin bozulması

Bu sorunların giderilmesi için toprağın yıkanması, dezenfeksiyonu gibi kısmi çözümler toprağın değiştirilmesi gibi kökten yöntemler bulunmaktadır. Fakat tüm bunların hem etkileri sınırlıdır, hem de ekonomik yükleri çok fazladır.

Ayrica, orman ağacı ve süs bitkisi fidan yetiştiriciliğinde aşağıda belirtilen hususlar yeni arayışlara sebep olmuştur. Bunlar;

May-2001 Vol:1 No:1 ISSN 1303-2399 Journal of Forestry Faculty, Gazi Uni.- Kastamonu 30
Çıplak köklü fidanların gerek ekim yastıklarında sökümü yapılırlar, gerekse ağaçlandırma sahalarına taşınması ve dikim esnasında köklerin zarar görmesi, dolayısıyla tutma ve gelişme başarısının düşük olması,

Geleneksel tüplü fidan üretimi sisteminin otomasyona uygun olmaması ve pahalı olduğu,

Çıplak köklü fidanların dikilebileceği sürenin kısa olduğu,

Özellikle ekstreem koşullara sahip alanlar için uygun ve kaliteli fidan yetiştirme zorunluluğu,

Son yıllarda topraktan gelebilecek değişik olumsuzluklara karşı geleneksel yetiştirme ortamı olan toprağın dışında materyal kullanma arayış; iç-dış mekan süs bitkileri ile ekstreem koşullarda performansı yüksek, arzulanayan fidan karakterlerine sahip orman ağacı fidan üretimi ön plana çıkmıştır.

Bu çalışmayla; ormandan da organik ve inorganik kökenli bazı substratların serada topraksız yetiştiriciliğe kullanılabilirliği ve bazı yeni yaklaşımların da ortaya konması hedeflenmiştir.

2. TOPRAKSIZ KÜLTÜR YETİŞTİRİCİLİĞİ YÖNTEMİ

Topraktan kaynaklanan sorunların çözümü için alternatif yöntem olan topraksız ortamlarda bitki yetiştiriciliği konusunda ilk çalışmalar 19. yüzyılın ortalarına dayanmaktadır. Ancak bu konuda ilk olumlu sonuçlar 1940’lı yıllarda alınmaya başlamış bitki yetiştiriciliğinde kullanılabileceği konusunda umutlar doğmuştur. Yöntemin seralarda kullanılmaya başlanması 1950’li yıllarda hızla yayılma eğilimi göstermiştir (1, 2).

Bugün seracılıkta çok önemli bir yeri olan Hollanda’dan sonra sebzeciliğin tümü; İngiltere, Belçika, Almanya, Fransa gibi ülkelerde % 30-90 arasındaki kısmı topraksız tarım biçiminde yapılmaktadır (3).

Orman ağacı ve süs bitkisi üretiminde de “topraksız kültür yetiştiriciliği” yöntemi son yıllarda özellikle Kuzey Avrupa ülkelerinde (Finlandiya, İsveç, Norveç) önemli aşama kaydetmiş, yeni teknolojilerin doğmasına sebep olmuştur. Türkiye’de ise 1990’larda/downloads başlarına kadar kitle fidan üretimlerinde kullanımı oldukça düşük olan bu yöntem,
yeni teknoloji transferleri ile kullanılmaya ve yaygınlaştırılmaya başlanmıştır.

Topraksız kültür yetiştiriciliğinde 50 yıldır çok sayıda yöntem denemesine rağmen, halen kullanılan topraksız yetiştiricilik yöntemlerinden iki biçimi önem kazandırmıştır:

1) Su Kültürü (Hidroponik)
 b) Aeroponik
 c) Durgun Su Kültürü
 d) Akan Su Kültürü

Besin çözeltisinin pH'sı ve elektrişsel iletkenlikleri (EC) bitkilerin optimum isteklerine göre düzenlenir. Tüm bunları sağlamak için
sağlamak için çözeltiler özel tanklarda hazırlanır, daha sonra sisteme bağlanarak kullanılır (4).

2.1. Yöntemin Avantajları

Topraksız yetiştirme yönteminin en önemli avantajı hiç kuşkusuz toprak hastalıklarına karşı etkili ve kesin bir çözüm getirmesidir. Bunun yanında ayrıca aşağıdaki yararları sağlar;

4. Su ekonomisi sağlar.

5. Topraksız kültürde bütün bitkilere eşit miktarda ve dengeli su-besin verilir. Böylece daha homojen ve unanim ürün elde edilebilir.

6. Dengeli sulama ve beslemeyle verimde ve kalitede artış sağlanır.

7. Bitkilerin büyüme, gelişme ve verimlilikleri daha kolay düzenlenilebilir ve yönlendirilebilir.

8. Sterilizasyonu daha kolaydır.

10. Besin maddelerinin dozları ayarlanarak bitkilerin vejetatif veya generatif fazda tutulmaları sağlanabilir. Örneğin; erken yada geç çiçeklenme ve meyvelenme gibi.

11. Bitkiler için su stresi problemi yoktur.

12. Topraksız kültür yetiştiriciliği otomasyona uygundur. Sulama ve gübreleme otomatize edilerek iş gücünden ekonomi sağlanır.

13. Topraksız kültür yetiştiriciliğinde, kök ortamının pH, tuzluluk, besin maddesi ve hava/su oranı daha sağlıklı bir şekilde ayarlanabilir (1, 4, 5).

2.2. Yöntemin Dezavantajları

Birçok avantaja rağmen, topraksız tarımın kullanımını sınırlayan bazı olumsuz yanları da bulunmaktadır. Bu olumsuzlukların en önemlileri şunlardır:

1. Sistemi çalıştırınca gerekli malzemelerin satın alınması ve kurulması pahalıdır, mali yük getirir.

2. Zaman zaman bazı kompleks bitki beslenme sorunları ile karşı karşıya kalınabilir. Yöntemin sağlıklı çalıştırılabilmesi için belirli bir minimum bilgi birikimine sahip kalifiye elemana gerek gösterir.

3. Düzenli ve kesintisiz elektrik sistemine gerek gösterir. Elektrik sisteminde kesintilerde (özellikle NFT sisteminde) çok önemli sorunlar çıkabilir.

5. Temiz bir çalışma gerektirir. Özen gösterilmemse bazı hastalıkların (Fusarium, Verticillium vb. kök hastalıkları) çıkması durumunda bunlar besin çözeltisi ile hızla yayılabilir (1, 2, 4, 5).
3. KATI ORTAM ALTERNATİFLERİ
3.1. Substratlar
3.1.1. İnorganik Substratlar

Kum
Çeşitli kayaların iklim olayları sonucu parçalanması ile oluşan, bileşimi, meydana geldiği kayanın yapısına bağlı, su tutma kapasitesi çok zayıf substrattır.

Topraksız yetiştiricilikte en uygun kum tane iriliği 0,5-2 mm. arasında olmalıdır. Ortamda küçük taneli olanların çokluğu drenaji ve havalanmayı güçleştirir.

Kum, diğer materyallerle belli oranda karıştırlarak kullanılabilir. Örneğin talaş ile kum karışımından kum miktarının en az % 25 ve daha üzerinde olması önerilir. Kum bu karışımında suyun daha üniform dağılmasını gerçekleştirebilir (6).

Çakıl
Topraksız kültürde en yaygın kullanılan ortamlardan biride çakılar. Çakıl tanelerinin büyüklüğü genelde 2-20 mm. arasında değişir. Genelde taneleri küçük ve yuvarlak olanlar kullanımda tercih edilir. Düzensiz yapılı çakılların su tutma güçlerinin yuvarlak yapıdakilerden daha yüksek olması karşın, keskin kenarlı çakılların bitki gövdelerine zarar vermesinden korkulduğu için, kullanılmalarından kaçınılmıştır. Çakıl, her yetiştirme periyodunda yıkanarak yada sterilize edilerek tekrar kullanılabilebilir (6).

Perlit

İslı iletkenliği çok düşük olan perlitin tanecikleri elektriksel yük taşımadığından su ve besin elementleri bitki kökleri tarafından kolayca alınamılır. Ayrıca kimyasal ve biyolojik ayrışma göstermediğinden yapısı...
değişmez. Sıkısmadığından köklü çelik ve fideler perllitten kök kayına uğramadan kolayca çıkarılabilir (8).

Ponza (Volkan tüfû)

Ponza, steril, kimyasal reaksiyon sevmeyen, pastorizasyonla yapışsal değişikliğe uğramayan bir substrattır. Doğal bir hidroktüür malzemesi olduğundan maliyet, perlit ve kile kıyasla daha düğüktür. Ponza taşı ucuz olmakla birlikte, hafif olması, taşımasıındaki kolaylık ve diğer özellikleri açısından da bitkiler için iyi bir malzeme ve gelişme ortamıdır (7, 9).

Ponza taşı suyu tutan ve koruyan, bu özelliği ile de su kullanımında ekonomi sağlayan bir agregat olması kurak ve yarı kurak bölgeler için önemini bir kat daha artırmaktadır (7).

Ponzanın tane iriliği genelde 1-5 mm arasında değişir. Fazlaca sülfat içerir, ancak yıkanarak sülfat bileşiklerinden arındırılabilir. Bunun içinde bulunan K, Ca, Mg gibi makro, Fe, Cu, Mn, Zn gibi mikro elementler bitkiye yarayışsız formdadır yada bitkiye yarayışlılık sınırları çok düüktür (6).

Vermikulit

Steril olan ve su absorbe etme özelliği çok yüksek olan ancak hava kapasitesi kısmen düşük olan mika grubu flogopit türü bir maddedir. Kullanımdan sonra sterilize edilmesi güçtür (10).

Kaya yünü

Bazalt ve kireç taşı karışımnın 1600 °C ısıtılması ile oluşturulan sıkıştırılmış liftir. Özellikle Hollanda, Belçika gibi ülkelerde geniş şekilde kullanılmaktadır (10).
Kimyasal yapısı; %47 SiO$_2$, %14 Al$_2$O$_3$, %1 TiO$_2$, %8 Fe$_2$O$_3$, %16 CaO, %10 MgO, %1 MnO, %2 Na$_2$O, %1 K$_2$O’dan oluşur (6).

Yapıtıran ve izotropik lifli bunyesi, yüksek su tutma kapasitesi, gözenekli ve oksijen zenginliği ile iyi bir kök ortamı oluşturması, besin eriyiklerini yüksek emme gücü ve eşit dağıtması kaya yünün topraksız yetiştiricilikte üstün özellikleridir (6).

Cam yünü

Cam fabrikalarından çıkan ince cam parçalarının toplanıp, birleştirilmesi sonucu elde edilir. Su tutma kapasitesi ve hava içeriğinin iyi olması karşısında fiyatının yüksek oluşto praksız yetiştiricilikte kullanılmasını engellemektedir (6).

Cüruf

Gözenekli olan cüruf kumdan hafifir. Kalitesi kömürün kalitesine göre değişir. Yıkanabilen sülfat içerdığınden dolayı kullanılmadan önce yakınmasıerektekniklerdir. Yıkanan cüruf kullanılmadan önce elenir. Kula cürufunun (2-5 mm çaplı) su tutma kapasitesi % 48.57, porozitesi % 62.47, hacim ağırlığı 0.820 gr/cm3, pH 6.6, EC 0.10 mmhos/cm’dir (6).

Plastik köpük (Styromul=Polystyrene)

Bunlara ek olarak plastikler ve polimerler, polyester, poliüretan, üre-formaldehit (Hygromul), fenolik bileşenler, hidrojeller ve genişletilmiş kil sentetik ve değişikliğe uğramış yetiştirme ortamı substratları olarak sıralanabilir (11).

3.1.2. Organik Substratlar

Turba (Torf)

Anaerobik şartların hakim olduğu alanlarda kısmen ayrırmış bitki ve hayvan artıklarının yüzeyde birikimi sonucu oluşmuş organik materyal katmanıdır (12).
Genel olarak turbalar % 60 ve daha yüksek organik madde oranına sahip, su tutma kapasitesi (% 60) yüksek ve % 30 civarında hava gözeneklerine sahip materyaldır. Çelik köklendirme ve fidan yetiştirme çalışmalarında temel dolgu materyal olarak kullanılır.

Su tutma kapasitesi kuru ağırlığın 15-20 (lifli turbalar), ve 4-8 (fazla ayrımsız turbalar) katıdır (14). Bitkisel artık oldukları için katyon değişim kapasitesi yüksektir (10).

Ağaç Kabuğu

Talaş

Ayrışması tamamlanmış talaşın katyon değişim kapasitesi yüksektir. Fermente olmamış talaş, bitkiye zararlı bazı mantarlar taşıyabileceği
endişesiyle sterilize edilmeden kullanılmaması önerilmektedir. pH'sı 5.0-6.8 arasında değişir, ayrışmanın ilerlediği dönemde pH'da biraz yükselme görülür. İnce ve kaba talaş olarak her ikisi de kullanılabılır. İnce talaş nemi kaba talaştan daha iyi yaydığı için, kaba talaş ise drenaj üstünlüğü nedeniyle tercih edilir. Bu sebeple karışım halinde kullanılasının daha iyi olacağı düşünebilir (6).

Yetiştirme ve köklendirme ortamlarında saf veya katkı materyali olarak kullanılan diğer organik materyaller arasında; çeltik kabuğu, Hindistan cevizi lifleri, buldan sazı, buğday sapı (saman), kepek, susam sapı, saz kamışı, mantar artığı/kırıntı, findik kabuğu kırıntı, mısır sapı ve çay artığı kompostu, değişik ağaç türlerinin ibre ve yaprak çürüntüsü, yosun, ayaçeci kabuğu/küspesi, diken küspesi, çitlenbik küspesi, koza lat talaş, çiftlik gübresi, pamuk küspesi, sayılabilir (2, 16, 17).

3.2. Ortamlarda Bulunması Gereken Temel Özellikler

2. Su tutma yeteneği iyi olup sık sık sulama gerektiğimizdir.

4. Toplam %95 civarında gözenekliliği (porozite) sahip olmalıdır.

5. Hava ve su kapasitesi dengesinin (ince ve kaba gözenekleri dengeli) uygun olması gerekir.

6. Ortamın asiditesi yetiştireceğimiz bitkiye uygun olmalıdır.

7. Yeterli miktarda bitki besin maddeleri içermeli, yorgun olmamalı yada dışarıdan beslenmeye dayalı bir üretim sistemi için de kullanılamıştır gübreleme ile serilen bitki besin maddeleri kolayça bitki tarafından alınabilecek özellikleri olmalıdır.

9. Ortamın gaz değişim kapasitesi (KDK) iyi olmalıdır.
10. Tampon kapasitesi yüksek olmalıdır.
11. Organik madde miktarı yüksek olmalıdır.
13. Stabilitenin yüksek olması (biyolojik, fiziksel ve kimyasal parçalanmaya dayanıklı olması) gerekir.

4. SONUÇ
Diğer üretim sektörlerinde olduğu gibi tarım ve ormanlıkta da son yıllarda hızlı gelişmeler görülmektedir. Plastiklerin kullanımının yaygınlaşması ile hızla gelişen seracılıkta bu durum daha da belirgin hale gelmiştir.
Topraksız yetiştirme, fertigation olarak adlandırılan sulama ile birlikte gübreleme tekniklerinin geliştirilmesi, ayrıca iklim düzenlemelerinde bilgisayar kullanımın bu üretim alanına bir endüstri kolu ile son derece kolay düzenleme mümkündür.
İleri teknoloji sayesinde hem verim, hem kalite yükseltilebilmekte hem de üretim takvimi kolay düzenlenebilmektedir.
Sebze tarımında geniş uygulama alanı bulan topraksız yetiştirme süs bitkileri, meyvecilik, bağcılık ve son olarak ta ormanlıkta kullanılmaya başlanmıştır.
Bir araştırmada topraklı yetiştirme yöntemi ile domates dekardan 15 ton ürün alınırken, topraksız yetiştirme parsellerinde 5 tona çıkmıştır. Yine ormanlıkta Doğu Ladino fidanı üretiminde 5 yılda dikim boyutuna ulaşan fidanlar, topraksız yetiştiricilikte 2-3 yılda ulaşabilmektedir.
Ülkemizde gerek tarım gerekse ormanlıkta yöreye özgü topraksız yetiştirme ortamı alternatiflerinin türü ve üretim noktalarına göre belirlenmesi ürün ve kalitede olumlu gelişmeler doğuracağı açıktr.
5. KAYNAKLAR

Bir Havzada Dere Akımını Etkileyen Faktörler

Arş. Gör. Miraç AYDIN
Gazi Üniversitesi, Kastamonu Orman Fakültesi
Orman Mühendisliği Bölümü

1. GİRİŞ

Yağış havzası hidrolojide sırtlardan geçen su ayrım çizgisinin çevrelediği ve bu alanda çeşitli kaynaklardan oluşarak toplanan suların bir ana meçra vasıtasıyla dersh edildiği içbükey bir arazi parçasıdır. Doğada arazi topografik bakımından irili ufaklı birçok havzalardan oluşmaktadır. Bu nedenle de arazi üzerindeki herhangi bir nokta mutlaka beli bir havzanın içerisinde yer alır. Çeşitli fiziksel, hidrolojik ve ekolojik özellikleri bakımından birer topoğrafik ve hidrolojik arazi birimi niteliğinde olan yağış havzaları, aynı zamanda birer planlama ve geliştirme birimleri olarak da düşünülmekte ve kullanılmaktadır.

Yeryüzünden yağışlar, yağmur, kar, dolu, çıg, karağı şeklinde düşmektedir. Yağışların bir kısmı, daha yeryüzüne ulaşmadan buharlaşmakta ve bazı yağışlar da bir şekilde diğerine dönüşmekte olup, arzın yüzeyine ulaşan yağışın bir kısmı vejetasyonun yaprak ve dal gibi toprak üstü kısımları tarafından tutulmakta (intersepsiyon) ve toprak yüzeyine ulaşmadan buharlaşmaktadır. Toprak yüzeyine ulaşan yağış sularının bir kısmı toprağın yüzeyinden içeriye sızmakta (infiltrasyon), bir kısmı da buna fırsat bulmadan buharlaşmaktadır.

Böylece toprak ve yüzeyinden buharlaşma ile yağış sularının bir kısmı tekrar atmosferde dönüştüktedir. Diğer yönden intersepsiyonla tutulan sudan ayrı olarak, transpirasyon (terleme) olayı ile de bitki yapraklarından, bir kısmı su atmosferde yitirilmektedir.

2. DERELERİN SINIFLANDIRILMASI

Bir yağış havzasının fiziksel karakteristikleri ve iklim özelliklerine göre dereleri üç gruba toplamak mümkündür.

a. Kısa ömürlü dereler
Ancak bir yağıştan sonra veya birikmiş karların erimesini izleyen günlerde su taşır. Genellikle kuru mecralardır ve mecradaki akım yalnız yüzeysel akıştan beslenir. Bu derelerin her zaman sabit ve yerleşmiş yatakları yoktur ve yağış havzaları ya geçiçen olmayan bir zemin sahiptir ya da tabansuyu düzeyi tüm dere yatağı boyunca mehra

May-2001 Cilt:1 No:1 ISSN 1303-2399 - Gazi Üniversitesi Kastamonu Orman Fakültesi Dergisi
tabanın altında bulunur. Bu nedenle bu dereler tabansuyu akışından yararlanamazlar.

b. Periyodik dereler

c. Sürekli dereler
Bu tip derelerde her mevsimde su bulunur. Bu derelerde tabansuyu düzeyi hiçbir zaman dere tabanının altında durmaz ve sürekli şekilde dere akımını besler (1).

4. DERE AKIMINI ETKİLEYEN ETMENLER

Dere akımını etkileyen etmenler iki genel grupta toplanmaktadır.
1. İklim etmenleri
2. Fizyografik etmenler

4.1. Dere Akımını Etkileyen İklim Etmenerleri

a. Yağış Tipi
Hidrograf üzerinde etkili bir etmendir. Nitekim yazın yağmur halinde düsen sürekli ve yeteri derecede şiddetli yağışlar dere akımında yükselmeleyevnedana getirirken, kışın sıfır derecenin altında sıcaklıktırda kar şekinde düsen yağışlar akışı etkilemezler. Ancak ülkemizde görüldüğü gibi, kışın yağan ve yüksek dağlarda fazla miktarda birikim yapan karların ilkbahar veya yaz başlangıcında havaların ısımasıyla birlikte erimesi ile taşın akımları meydana gelmektedir.

b. Yağış Şiddeti
Dere hidrografının şekli üzerinde etkili bir etmendir. Eğer yağışın şiddeti infiltrasyon kapasitesini aşıyorsa ve yüzeySEL akış oluşтурuyorsa, bu durumda yağış şiddetindeki bir artış dere düzeyinde hızlı bir artışa yol açacaktır.
c. Yağışın Süresi

d. Havza Üzerinde Yağışın Dağılımı
Bir yağış havzasında, aynı miktar yağış suyu bırakan ve yağış şiddeti aynı olan iki ayrı yağışın oluşturdukları akım hidrografları birbirinden farklı olmaktadır. Zira, aynı miktarlarda olmalarına karşın yağışın birisi havzannın membra kısmındaki bir alana tekduze olarak düşer ve çok az bir akış oluştururken aynı miktar bir yağış havzannın aşağı ve çıkış ağzına yakın küçük bir alan düştüğü için akışın taşkın akımlarına yol açabilir. Birinci yağmur havzannın yukarı kısmına az çok homojen bir şekilde düştüğü ve belki de infiltrasyon kapasitesini büyük ölçüde aştığı için, akış üzerinde etkili olmamıştır. Halbuki ikinci yağışta infiltrasyon kapasitesi çok fazla aşdıgı ve infiltrasyon için vakit kalmadan dereye ulaştığı için bu yağış yüksek akımlara neden olmuştur.

e. Yağışın Havza Üzerindeki Hareket Yönü
Havza üzerindeki yağışın dere akış yönüne göre hareketi, derekDE Yüksek akımlar veya bunun süresi üzerinde büyük etkiye sahiptir. Eğer havzayı kateden yağış denizin akış yönünde hareket ediyorsa, kısa süreli fakat yüksek düzeyli bir akım meydana gelir. Aynı yağış aksi yönde hareket ederse, bu kez de uzun süreli fakat aqak düzeyli bir akım meydana gelir.

f. İki Yağış Arasındaki Toprağın Nemi
Eğer toprak nemi yüksek ise, infiltrasyon kapasitesi az ve havzada bir taşının olma olması fazladır. Eğer toprak tarla kapasitesinde ise, infiltrasyonla toprağa giren su tabansuyunu ve bundan oluşan akımı arttırmır. Yaz sonları ve sonbahar başlarında topraktaki su,
evapotranspirasyon aracılığı ile harcanır ve yağış suları toprak rezervinin dolması için kullanılır ve dere akımlarına önemli katkı olmaz. Fakat toprağı doyuran uzun süreli bir yağıştan sonra düşen yağmurların, yüksek akımların oluşmasına neden olduğu çok görülmüştür.

4.2. Dere Akımini Etkileyen Fizyografik Etmenler

a. Bir Havzadaki Arazi Kullanma Şekli
Dere akımlarını etkileyen en önemli bir etmendir. Tamamen sık ve boylu bir ormanla kaplı bir yağış havzasında yağışın büyük bir kısmı çeşitli şekillerde tutulur veya geçici olarak depolanır ve yüzey akışına geçmez. Bunda ormanın tepe örtüsü ve toprak florasının olduğu kadar ve daha önemli olarak orman ölü örtüsünün rolü vardır. Çünkü orman ölü örtüsü kendi ağırlığının 4-5 misli ağrılıktaki suyunu bünyesinde bir süre tutmaktadır. Diğer yandan en şiddetli yağışları bile absorbe etmekte ve alttaki toprağa yavaş yavaş vermekte ve taşın aksılar neden olan yüksek yüzey akışların oluşmasını önlemektedir. Bu ormanın kaldırılması halinde derenin hidrograf, aynı miktar ve şiddetli yağışlardan sonra tümüyle değişmekte ve kısa süre sonra derelerde yüksek taşın akımları meydana gelmektedir (2).

Arazi kullanım şekillerinin orman örtüsünün ve ölü örtünün hidrolojik devre üzerinde önemli olduğunu, yağan yağışların toprak üzerindeki dövme ve çarpma etkisinin azaldığını ve böylece yüzey akışı azalmasıyla erozyon ve sellerin önleniği ortaya konulmuştur (3).

b. Toprak Tipi
İnfiltresyon ve yüzey akışı etkileyen çeşitli fiziksel özellikleri ile önemli bir etmendir. Toprağın tekstürü, strüktürü gözenek hacmi ve gözeneklerin dağılımı, derinliği, kolloidlerin cinsi, şişme ve büzülme özellikleri, ıslanma yeteneği ve agregatlaşma gibi nitelikleri infiltresyon ve yüzey akış üzerinde etkili olmaktadır ve bu nedenle de dere akımlarında önemli bir rol oynamaktadır.

c. Yağış Havzasının Büyüklüğü ve Şekli
Bir yağış havzası su ayırım çizgisini ile sınırlıdır. Bu çizgi boyunca yüzey akışı sular iki komşu havza arasında bölünür. Bir de yer altı suyu ayırım çizgisini vardır. Bu iki ayırım çizgisini birbiri üzerine oturduğu...
sürece, bir havzadan diğerine yer altı suyu kaçağı yoktur. Fakat bazen jeolojik yapı öyle olur ki, bir havzadan diğerine yer altı suyu kaçağı meydana gelir.

Yağış Havzasının Şekli
Havza şekli, düşen yağışın derelere ulaşma hızı ve zamanını etkilemektedir. Havza şeklini ifade etmek için kullanılan “form sayısı” (F), havzanın ortalama genişliğinin (b), uzunluğuna (L) oranı ile bulunur.

\[F = \frac{b}{L} \]

d. Yağış Havzasının Ortalama Yüksekliği

e. Yağış Havzasının Ortalama Eğimi
Bir yağış havasında eğim ilişkileri daha karmaşık olup, infiltrasyon, yüzey akış, toprak nem ve tabansuyu tarafından dere akımına yapılan katkılar yönünden önemli bir etmendir. Bu nedenle, yüzey akışın zamanı ve derelere ulaşarak yüksek akımları meydana getirmesi üzerinde en etkili etmenlerden birisidir (1). Havzanın ortalama eğimi yüzeysel
Akışın oluşmasında ve dolayısıyla dere akımına ait hidrografiin şekli ve pik akımın oluşumunda önemli bir etkendir. Havzanın ortalama eğimi aşağıdaki formülle hesaplanmaktadır.

\[So = \frac{D \cdot L}{A} \]

\(So \) = Havzanın ortalama eğimi (%)
\(D \) = İki tesviye eğrisi arasındaki yükseklik farkı
\(L \) = Havzadaki tesviye eğrilerinin toplam uzunluğu
\(A \) = Havzanın toplam alanı

f. Yağış Havzasının Genel Bakısı

g. Yağış Havzasının Drenaj Durumu

\[Ds = \frac{Ns}{A} \]

Bu formülde;
\(Ds \) = Dere sıklığı
\(Ns \) = Havzadaki toplam dere sayısı
\(A \) = Yağış havzasının alanı \((km^2) \) olarak ifade edilir.

Formülde görüldüğü gibi, dere sıklığı dere sayısının yağış havzasına bölünmesi ile hesaplanmaktadır. Dere sayısı belirlenirken sürekli ve periyodik dereler göz önüne alınır (2).

\[Dy = \frac{\sum L}{A} \]

Bu formülde;

- \(Dy \) = Drenaj yoğunluğu
- \(L \) = Derelerin uzunlukları (km)
- \(A \) = Havzannın alanı (km²)

Buradan da görüldüğü gibi drenaj yoğunluğu havzadaki birim alana isabet eden ortalama dere uzunluğunu ifade etmekteidir. Genel olarak küçük drenaj yoğunluğu değerleri releyfin alçak olduğu ve arazinin sık bir vejetasyon örtüsü ile kaplı bulunduğu havzalarda ve alt toprağın çok dayanıklı veya geçirgen olduğu bölgelerde görülmektedir. Buna karşılık büyük drenaj yoğunluğu değerleri ise daha ziyade dağılık ve vejetasyonun seyrek olduğu ve alt toprağın dayanıksız veya geçirgenliğinin az olduğu yerlerde söz konusudur (2).

5. SONUÇLAR

1. Dere akımlarını etkileyen etmenler, yağış havzalarının planlanmasında ve bu havzalardan etkin bir şekilde düzenleme yapılmasında son derece önemli olan faktörlerdir.

2. Yağış havzalarının hidrolojisinin belirlenmesinde ve havzada yapılacak olan hidrolojik çalışmalarla işık tutması açısından özellikle iklim etmenlerinin çok iyi bilinmesi ve irdelenmesi gerekmektedir.

3. Dere akımları üzerinde etkili olan İklim etmenlerinden yağışın tipi, Hidrograf üzerinde yağış şiddet ise Dere hidrografının şekli üzerinde etkili bir etmendir. Yağışın şiddetinin infiltrasyon kapasitesini
aşması durumunda ve yüzeySEL AĞIŞ OLUŞTURDUĞUNDA, YAĞIŞ ŞİDDETİNDEKİ
BIR ARTIŞ DERE DÜZÉYİNDE HİZLI BİR ARTIŞ YOL AÇACAKTIR.

4. Yağış havzalarındaki yağışın süresinin artması, infiltrasyon
kapasitesini düşürmekte ve bununla birlikte yüzeySEL AĞIŞIN DA SÜRESİ
ARTMAKTADIR. Eğer yağışlar uzun süre devam ederse, özellikle taban
arazide tabansuyu düzeyi yükselmeekte, infiltrasyon kapasitesi "sıfır"
olmakta, taşın akımları oluşmaktadır. Bu nedenle yağış havzalarındaki
Yağış süresinin bilinmesi önem arz etmektedir.

5. Yağış havzalarındaki yağışın havza çıkışına yakın bir yere
düşmesi halinde havzadaki pik akımlara ve böylece taşın oluşumuna
eneden olabilmektedir. Yine havza üzerindeki yağışın dere akış yönüne
göre hareketi, derede yüksek akımlar veya bunun süresi üzerine büyük
etkiye sahiptir.

6. Yağış havzasında arazi kullanım şekillerinden orman
arazilerinde ağacın oluşturduğu kapalılık ile birlikte özellikle yağmur
şeklinde olan yağışlarda yağışın toprağa olacak eroziv etkisi
vayasa etmektedir ve büyük bir kısmı engellenmektedir. Ayrıca orman
topraklarında bulunan ölü örtü oluşumu hem yağmurun direkt olarak
oluşturduğu eroziv etkisini hem de yüksek su tutma kapasitesiyle birlikte
suyu tutarak yüzeySEL AĞIŞIN DAĞIŞIN Daha geç oluşmasını ve nihayetinde toprak
Kaybını önemli ölçüde engellemektedir.

7. Havzanın eğimi infiltrasyon, yüzeySEL ağı, toprak nemi ve
tabansuyu tarafından dere akıına yapılan katkılar yönünden önemli bir
etmendir. Arazinin eğimi yüzeySEL AĞIŞIN ZAMANINI ve derelere ulaşarak
yüksek akımları oluşturmasının yönünden önem arz etmektedir. Havzanın
genel topografik şekli de yüzeySEL AĞIŞIN OLUMUNUNA ve toprak
KAPASITELERİNDE önemli bir husustur. Havzanın şeklinin dar ve yüksek
engebeli bir arazi yapısından oluşması yüzeySEL AĞİŞIN OLUMUNUNU
hızlandırılmaktadır ve oluşan yüzeySEL AĞİŞIN DAĞIŞIN Hızlı bir
şekilde ana derelere ulaşmasına sebep olmaktadır.
KAYNAKLAR

Batı Karadeniz Ormanlarında Göknar Büyük Kabuk Böceği (*Pityokeines curvidens* (Germ)) (Coleoptera, Scolytidae)’in Son On Yıllaki Zararı ve Mücadele Çalışmalarının İncelenmesi

Arş. Gör. Ömer KÜÇÜK
Gazi Üniversitesi, Kastamonu Orman Fakültesi
Orman Mühendisliği Bölümü

1. GİRİŞ

Doğal esaslarla dayanan devamlı bir orman işletmesinin gerçekleştirilmesinde ormanın korunması ve sağlıklı ön planda yer alması gereken şartlardan birisidir. Özellikle üretim faaliyetlerini uzun yılların sabırlı sonlarına bağlamış olan orman işletmeciliğinde bir böcek afetinin neden olduğu tehlike kesinlikle küçümsememelidir.

2. BATI KARADENİZ BÖLGESİ

2.1. Coğrafi Konumu: Coğrafi konum bakımından Batı Karadeniz Bölgesi, yatay yönde 30° 4’ – 35° 25’ boylamlarında, 39° 52’ – 42° 7’ enlemleri arasında ve dikey yönde de 0 (sıfır) deniz seviyesiyle de 2378m (Köroğlu Tepesi) yüksekliklerinde bulunmaktadır.

3. BATI KARADENİZ GÖKNARI (Abies bornmülleriana)’NIN YAYILIŞI

Göknarın yayılışı ekolojik özelliklerle sık sıkıya ilgili olduğu gibi göknar zararlı böceklerinin yayılışı da bu ağaç türünün yayılışına o derece yakındır. Abies bornmülleriana Înebolu, Kastamonu, Küre, Bolu, Abant, Safranbolu, Ilgaz Dağı ve Evrenye’de görülmüştür. Göknarlar genel olarak sahile paralel istikametlerde bir yayılış gösterirler. Sahilden itibaren birinci silsilede (Ayancık, Küre, Karadere) göknar doruk çizgisinin arkası aşılduktan sonra önemli derecede güney yamaçlara sarkar. İkinci silsilede (Kastamonu, Bolu, Düzce) daha az, üçüncü silsilede (Köroğlu, Işık Dağında) ise hemen hemen hiç görülmeyebilir.
Göknar, 1000-1200m’ye kadar kayınla karışık, daha yukarda ise saf ormanlar oluşmaktadır. 1500m’den itibaren ise çam ile karışık ormanlar oluşmaktadır. Göknar, Batı Karadeniz Bölgesinde yaklaşık olarak 870 000 hektarlık bir alanda yayılış göstermektedir.

4. GÖKNAR BÜYÜK KABUK BÖÇEĞİ

4.5. Zararı: Sekonder zararlıdır. Özellikle fizyolojik yaş sınırına ulaşmış ağaçlarda isteklerine uygun olan yetişme muhitlerinde göknarlarda tercihen zararlı olurlar. Fakat, fazla miktarda ürediği takdirde primer zararlı bir hal alarak sağlam ağaçlara gider. Çokuz kez
Pissodes picea veya Cryphalus picea ile rastlanan bu böcek genellikle ağacın üst kısmından başlayıp aşağıya doğru zarar yapar.

5. GÖKNAR BÜYÜK KABUK BÖCEĞİ (Pityokeites curvidens (Germ)) (Coleoptera, Scolytidae)'nin BATI KARADENİZ BÖLGESİNDEKİ ZARARI VE MÜCADELE YÖNTEMLERİ

5.1. Zonguldak Orman Bölge Müdürlüğünde Göknar Büyük Kabuk Böceğinin Tahribatı ve Mücadele Çalışmaları

Zonguldak Orman Bölge Müdürlüğü (ZOBM) ilk olarak göknar büyük kabuk böceği tahribatı 1986 yılında Yenice orman İşletme Müdürlüğü'nün karışma dahil edilmeyen ancak, münferit halde göknar ağacının bulunduğu meşelerle başlamıştır. İlk tasarrufun başlama objesi olan göknar ağacı fertleri, düşük rakımda ökse otu ile zayıflamış ferttir.

<table>
<thead>
<tr>
<th>Yılı</th>
<th>Tahribat Miktar(m³)</th>
<th>Tahribat Alanı(Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>49.946</td>
<td>11.602</td>
</tr>
<tr>
<td>1988</td>
<td>62.025</td>
<td>15.592</td>
</tr>
<tr>
<td>1989</td>
<td>74.929</td>
<td>22.628</td>
</tr>
<tr>
<td>1990</td>
<td>45.498</td>
<td>16.345</td>
</tr>
<tr>
<td>1991</td>
<td>21.427</td>
<td>15.559</td>
</tr>
<tr>
<td>1992</td>
<td>37.373</td>
<td>5.095</td>
</tr>
<tr>
<td>1993</td>
<td>28.771</td>
<td>9.724</td>
</tr>
<tr>
<td>1994</td>
<td>27.591</td>
<td>6.416</td>
</tr>
<tr>
<td>1995</td>
<td>229.536</td>
<td>42.689</td>
</tr>
<tr>
<td>1996</td>
<td>179.697</td>
<td>50.764</td>
</tr>
<tr>
<td>1997</td>
<td>75.762</td>
<td>25.639</td>
</tr>
<tr>
<td>TOPLAM</td>
<td>832.555</td>
<td>222.053</td>
</tr>
</tbody>
</table>
1995 yılındaki GBKB’nin kitle üremesi üç ana sebebe bağlanmıştır:

2. Adi ökse otunun ağaçlarda yoğun şekilde bulunması göknarlarda kabuk böceklerinin üremesi için uygun zemin hazırlamıştır.

1995 Yılı Çalışmaları

1995 yılında bölge müdürlüğünün bazı işletmelerinde ulaşılabilen yerlerde Şubat-Mart aylarında böcek tahripli ağaçların tespitine başlanmış, tespit edilen tahripli ağaç miktarı yıl sonuna kadar 229.536 m³ olmuştur. Buna karşılık yıl sonuna kadar 210.612 m³ tahripli göknar kesirilerek 34.644 ha. alanda mekanik ve 8.045 ha’lık alanda da kimyasal olmak üzere toplam 42.689 ha alanda mücadele yapılmıştır. Bu mücadele GBKB ve GKKB’nin ikisini de kapsamaktadır.

1996 Yılı Çalışmaları

18.924 m³ tahripli miktar ile toplam tahripli miktar 198.864 m³ olmuştur. 1996 yılında mücadele iki şekilde yapılmıştır:

2. Zararların kitle üretemesi yapabileceğini kritik yerler (üreme oacakları) baştı olmak üzere tahripli ağaçlar kestirilerek kök dibinden tepeye kadar olan yer kabuk şeridi bırakılmadan kabukları soydurulmuş ve bulundukları alan ile kabukları soyulan ağaçlar ilaçlanmıştır.

Mücadelede tuzak ağacı düşünülmemiştir. Çünkü; zararının tuzak ağacına gelme garantisi yoktur. Zararın tahribat alanı oldukça geniştir. Tuzak ağacına zararın gelme garantisi olsa da, az miktarında zarar olduğunda hektar için tuzak ağacı sayısı 5-10 adete, bu sayı büyük afetlerde ise 50-60 ağaca çıkabilmektedir.

1997 yılında da uygulanan bu çalışmalar aynen devam etmiştir. 1996’dan 1997’ye 781 m³ tahripli göknar devretmiştir. 1997 yılında 75.762 m³ göknar tahribata uğramış, toplam tahripli göknar miktarı 76.543 m³ olmuştur. Bunun 74.504 m³’nün üretimi yaptırılarak mücadele 1996 yılındaki gibi devam etmiştir.

5.2. Kastamonu Orman Bölge Müdürlüğüne Göknar Büyük Kabuk Böceği Zararı ve Mücadelesi

Bölge müdürlüğünde GBKB zararı Kastamonu Orman İşletme Müdürlüğü ve Küre Orman işletme Müdürlüğüne 1986 yılında az miktarlarda görülmuş, tuzak ağacı konularak mücadeleye başlanmıştır. 1989 yılında sahalar böceklerden temizlenmiştir. 1994 yılı Temmuz ayında Daday Orman İşletmesinde 224.5ha sahada 230 m³ GBKB zararı nedeniyle kurumun göknarlar kabuklu olarak ormanından çıkarılmış, açıklik bir sahada kabukları soyularak yakılmıştır.
Tablo 2. Yıllar itibarı ile GBKB’nin Zarar Yaptığı Alan ve Ağaç Miktarı

<table>
<thead>
<tr>
<th>Yıllar</th>
<th>Hastalıklı Saha (ha)</th>
<th>Kuruyan Ağaç (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>224.5</td>
<td>230</td>
</tr>
<tr>
<td>1995</td>
<td>1865.5</td>
<td>39458</td>
</tr>
<tr>
<td>1996</td>
<td>3137.5</td>
<td>39182</td>
</tr>
<tr>
<td>1997</td>
<td>3246</td>
<td>32072</td>
</tr>
<tr>
<td>1998</td>
<td>3196.5</td>
<td>16875</td>
</tr>
</tbody>
</table>

1995 yılında sekiz orman işletme müdürlüğünde GBKB zararı afet halini alarak geniş alanlarda görülmüştür.

Tablo 3. İşletmeler İtibarı ile 1995 Yılı Göknarlardaki Böcek Zararı

<table>
<thead>
<tr>
<th>İşletme adı</th>
<th>Zararlı</th>
<th>Alan (ha)</th>
<th>Miktar (m³)</th>
<th>Yapılan çalışmalara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azdavay</td>
<td>---</td>
<td>---</td>
<td>3021</td>
<td>Fizyolojik kuruma, böcek sonradan gelmiş</td>
</tr>
<tr>
<td>Ç.Zeytin</td>
<td>P.curvidens</td>
<td>134</td>
<td>3696</td>
<td>Zarar afet şeklinde, tuzak ağacı kullanıldı</td>
</tr>
<tr>
<td>Dadya</td>
<td>P.curvidens, C.picea</td>
<td>224.5</td>
<td>1597</td>
<td>Zarar afet şeklinde, tuzak ağacı kullanıldı</td>
</tr>
<tr>
<td>Hanönü</td>
<td>P.curvidens, C.picea</td>
<td>218</td>
<td>2339</td>
<td>Fizyolojik kuruma, böcek sonradan gelmiş</td>
</tr>
<tr>
<td>İnebolu</td>
<td>P.curvidens, C.picea</td>
<td>140</td>
<td>435</td>
<td>Afet halinde mücadele yapıldı</td>
</tr>
<tr>
<td>Kastamonu</td>
<td>P.curvidens, C.picea</td>
<td>540</td>
<td>13763</td>
<td>Afet halinde mücadele yapıldı</td>
</tr>
<tr>
<td>Küre</td>
<td>P.curvidens, C.picea</td>
<td>414</td>
<td>3775</td>
<td>Afet halinde mücadele yapıldı</td>
</tr>
<tr>
<td>Tosya</td>
<td>P.curvidens, C.picea</td>
<td>195</td>
<td>5769</td>
<td>Afet halinde</td>
</tr>
</tbody>
</table>

1995 yılı mücadele çalışmalarını sırasında gerek tuzak ağacı gerekse dikili ağaçlarda böceklerin yumurta bırakıldığı pek azında kurtçük çıktığı bunlardan bir kısmının krizalit olmadan öldüğü tespit edilmiştir. Mevsimin yağışlı geçmesi bu böceğin kitle halinde üremesine engel olmuştur.
Tablo 4. İşletmeler İtibari ile 1996 Yılı Göknarlardaki Böcek Zararı

<table>
<thead>
<tr>
<th>İşletme adı</th>
<th>Zararlı</th>
<th>Alan (ha)</th>
<th>Miktar (m³)</th>
<th>Yapılan çalışmalar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ç.Zeytin</td>
<td>P.curvidens</td>
<td>198</td>
<td>270</td>
<td>Kurumalar mücadeleler neticesinde oldukça azalmış.</td>
</tr>
<tr>
<td>Daday</td>
<td>P.curvidens, C.picea</td>
<td>224.5</td>
<td>1520</td>
<td>Zarar afet şeklinde, 850ha saha kontrol altında diğer kısımlarda salınım devam ediyor.</td>
</tr>
<tr>
<td>Hanönü</td>
<td>P.curvidens, C.picea</td>
<td>218</td>
<td>1219</td>
<td>Salınım devam etmekte ve düzeltme esnasında salınım devam etmekte.</td>
</tr>
<tr>
<td>İnebolu</td>
<td>P.curvidens, C.picea</td>
<td>12</td>
<td>650</td>
<td>Salınım devam etmekte.</td>
</tr>
<tr>
<td>Küre</td>
<td>P.curvidens, C.picea</td>
<td>414</td>
<td>2600</td>
<td>Salınım devam etmekte birlikte kurumalar azalmış.</td>
</tr>
<tr>
<td>Tosya</td>
<td>P.curvidens, C.picea</td>
<td>747</td>
<td>650</td>
<td>Salınım devam ediyor, kurumalar azalmış durumda.</td>
</tr>
</tbody>
</table>

Tablo 5. İşletmeler İtibari ile 1997 Yılı Göknarlardaki Böcek Zararı

<table>
<thead>
<tr>
<th>İşletme adı</th>
<th>Zararlı</th>
<th>Alan (ha)</th>
<th>Yapılan çalışmalar</th>
</tr>
</thead>
<tbody>
<tr>
<td>İhsangazi</td>
<td>P.curvidens</td>
<td>245</td>
<td>1995 sonunda kurumalar başlamış ve devam etmekte.</td>
</tr>
<tr>
<td>Ç.Zeytin</td>
<td>P.curvidens</td>
<td>198</td>
<td>Kurumalar mücadeleler neticesinde oldukça azalmış.</td>
</tr>
<tr>
<td>Daday</td>
<td>P.curvidens, C.picea</td>
<td>239</td>
<td>Zarar afet şeklinde, 100 adet feromon tuzağı kullanılıyor.</td>
</tr>
<tr>
<td>Araç</td>
<td>P.curvidens, C.picea</td>
<td>700</td>
<td>Salınım devam etmekte.</td>
</tr>
<tr>
<td>İnebolu</td>
<td>P.curvidens, C.picea</td>
<td>29.5</td>
<td>Hasta fertler çıkarıldı, saha kontrol altında.</td>
</tr>
</tbody>
</table>
Tablo 5 (Devam). İşletmeler İtibarı ile 1997 Yılı Göknarlardaki Böcek Zararı

Kastamonu	P. curvidens, C. picea	1136	Hasta fertler ormandan çıkarılıyor
Küre	P. curvidens, C. picea	424	Kurumalar azalmış, Feromon tuzağı kullanılmaktadır
Tosya	P. curvidens, C. picea	353	Hasta fertler çıkarılır, Feromon tuzağı kullanılmaktadır
Azdavay	P. curvidens	175	Hasta fertler ormandan çıkarılıyor
Karadere	P. curvidens	500	Hasta fertler çıkarılıyor
Pinarbaşı	P. curvidens, C. picea	446.5	Hasta fertler çıkarılıyor, kurumalar azalmış

Tablo 6. İşletmeler İtibarı ile 1998 Yılı Göknarlardaki Böcek Zararı

<table>
<thead>
<tr>
<th>İşletme adı</th>
<th>Zararı</th>
<th>Alan (ha)</th>
<th>Yapılan çalışmalar</th>
</tr>
</thead>
<tbody>
<tr>
<td>İhsangazi</td>
<td>P. curvidens</td>
<td>50</td>
<td>Yol yokluğu nedeni ile mücadele yapılamıyor</td>
</tr>
<tr>
<td>Ç. Zeytin</td>
<td>P. curvidens</td>
<td>198</td>
<td>Kurumalar mücadeleleri neticesinde oldukça azalmış</td>
</tr>
<tr>
<td>Daday</td>
<td>P. curvidens, C. picea</td>
<td>251.5</td>
<td>50 adet feromon tuzağı kullanılıyor olumlu sonuçlar alınıyor</td>
</tr>
<tr>
<td>Araç</td>
<td>P. curvidens, C. picea</td>
<td>700</td>
<td>Mücadele olmuş olumlu sonuç verdi</td>
</tr>
<tr>
<td>İnebolu</td>
<td>P. curvidens, C. picea</td>
<td>29.5</td>
<td>Hasta fertler çıkarıldığı, saha kontrol altında</td>
</tr>
<tr>
<td>Kastamonu</td>
<td>P. curvidens, C. picea</td>
<td>972.5</td>
<td>Hasta fertler ormandan çıkarılıyor, feromon tuzağı kullanıldı ancak olumlu netice alınamadı</td>
</tr>
<tr>
<td>Küre</td>
<td>P. curvidens, C. picea</td>
<td>381</td>
<td>Kurumalar azalmış, feromon tuzağı ve mekanik mücadele birlikte kullanılmaktadır</td>
</tr>
<tr>
<td>Tosya</td>
<td>P. curvidens, C. picea</td>
<td>264</td>
<td>Hasta fertler çıkarıldığı, feromon tuzağı kullanılmaktadır olumlu sonuç olumu</td>
</tr>
<tr>
<td>Azdavay</td>
<td>P. curvidens</td>
<td>105</td>
<td>Hasta fertler ormandan çıkarılıyor</td>
</tr>
<tr>
<td>Pinarbaşı</td>
<td>P. curvidens, C. picea</td>
<td>223</td>
<td>Hasta fertler çıkarıldığı, ancak salgın henüz önlenemedi</td>
</tr>
</tbody>
</table>

Tablo 7. Bölge müdürlüğü itibari ile böcek zararının görüldüğü saha ve böcekli enval miktarı

<table>
<thead>
<tr>
<th>Bölge Müdürlüğü</th>
<th>Böcekli miktar (m³)</th>
<th>Böcekli saha (Ha)</th>
<th>Üretilen (m³)</th>
<th>Üretilecek (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolu</td>
<td>144145</td>
<td>29321</td>
<td>129577</td>
<td>14618</td>
</tr>
<tr>
<td>Kastamonu</td>
<td>33835</td>
<td>1695</td>
<td>33835</td>
<td>---</td>
</tr>
<tr>
<td>Sinop</td>
<td>132396</td>
<td>15000</td>
<td>123603</td>
<td>8793</td>
</tr>
<tr>
<td>Zonguldak</td>
<td>211807</td>
<td>36000</td>
<td>201166</td>
<td>10641</td>
</tr>
<tr>
<td>Toplam</td>
<td>522233</td>
<td>82016</td>
<td>488181</td>
<td>34052</td>
</tr>
</tbody>
</table>

6. ÖNERİLER

Zararlı büyük göknar kabuk böcekleri ile mücadelenin tuzak ağacı konması, esas olarak böcekli ağaçların kesilerek kabuklanması, kabuklarının kısa zamanda yakılması veya ilaçlanması ile böceklerin imhası şeklinde yapıldığı, bu böceklerle başka türlü mücadele şeklinin olmadığı bilinmektedir.

Hastalığın bulaştığı sahalarda sararmakta olan böcekli ağaçlar kısa zamanda kesilip kabukları soyulacak ve bu çalışma Şubat ayının sonuna kadar bitirilecektir. Ayrıca hastalıkın bulaşmış olduğu sahalar devamlı kontrol altında tutulacak sararmaya başlayacak veya sararan ağaçların en kısa zamanda kestirilerek kabukların soyulmasına veya ilaçlanmasına önem gösterilecektir.

Üretim, böcek faaliyetinin olmadığı Aralık, Ocak ve Şubat aylarında yapılacak. Bu aylar dışında üretilen kabuklu envalin mutlaka bir ay içinde, özellikle Temmuz ve Ağustos aylarında üretilenler ise 15 gün içerisinde ormana uzaklığı 10km olan depolara taşınarak ormandan çıkarılması sağlanacaktır.

Böcekli ağaç üretimine öncelik verilecektir. Normal üretim devam ederken böcek zararının olması durumunda normal üretim durdurulacak, böcekli ağaçlar üretirilecektir.

Bunların yanında koruma önlemleri olarak;
a) Bir yaşlı meşçeler kurmaktan kaçınmalı ve ormanda temiz bir işletme uygulanmalıdır.
b) Ormanı hastalıklı ve zayıf ağaçlardan temizlemeli, kesim artıklarını bekletmeden ormandan çıkarmalı ve yakmalıdır.
c) Savaş için böcekin fizyolojik isteklerine uygun nitelikte tuzak ağaçları hazırlanmalıdır.

KAYNAKLAR

Türkiye’de Mobilya ve Orman Ürünleri Sanayii

Arş. Gör. M. Hakan AKYILDIZ
Gazi Üniversitesi, Kastamonu Orman Fakültesi
Orman Endüstri Mühendisliği Bölümü

A- MOBİLYA SANAYİİ

1) Mobilyanın Tanımı:

Mobilya, Ana Britanica’da “Çeşitli amaçlarla kullanmak üzere ahşap, metal, plastik, mermer, cam, kumaş, deri gibi malzemelerle yapılan eşya” olarak tanımlanırken; Büyük Larousse’ta ise “Bir konutun dayanıp dönüşmesine yarayan ve orada oturan kişilerce kullanılan eşyanın tümü” olarak tanımlanmaktadır.

Değişik kaynaklarda yapılan tanımlamaları verdikten sonra kapsamlı olarak bir tanımlama yapalım. Mobilya, masif ağaç veya ağaç malzemelerin (yongalevha, liflevha, kontrplak, kontrtabla, kaplama vb.), metallerin ve plastiklerin çeşitli şekiller verilmek üzere bir çok işlemlerden geçirilmesi; koruyucu, güzelleştirici üstüveyz işlemeleri yanında, tekstil ürünleri, sentetik deri, yapay sönger ve diğer tamamlayıcı gereçlerle (vida, cam, mermer, yay gibi montaj ve doşeme malzemeleri) işlevsel ve estetik özellikler kazandırılarak, konut, büro, otel, lokanta, okul vb yerlerde kullanılmak üzere yapılan; sabit veya hareket etirilebilen (masa, sandalye, gardrop, kanep, kütüphane vb.) dayanıklı tüketim ürünleridir.
2) Mobilyanın Tarihsel Gelişimi:

Genelde mobilya yapıldığı çağın ve dönemin özelliklerini yansıtmakta olup; yaşanan koşullara göre mobilyaların biçimleri de değişmektedir.

Mobilya sanatının gelişimini ve evrimini açıklayabilmek için sanat tarihinde önemli sayılan bazı dönem ve akımlar vardır. Bunlar;
- Mısır Mobilya Sanatı,
- Mezopotamya Mobilya Sanatı,
- Yunan Mobilya Sanatı,
- Roma Mobilya Sanatı,
- Bizans Mobilya Sanatı,
- Gotik Mobilya Sanatı,
- Rönesans Mobilya Sanatı,
- Barok Mobilya Sanatı,
- Rokoko Mobilya Sanatı.
Bu dönemlerde tasarlanan mobilya “klasik mobilya” diye adlandırılmaktadır. Klasik mobilya oldukça ağır, aşırı süsleneli, eğrisel hatlara önem veren, pahalı, malzemenin ekonomik kullanılmasına olanak vermeyen özelliklere sahipti.

19. yüzyılda mobilya sanatında etkili olan akımlara kısaca göz atalım:

3) Micheal Thonet ise masif ağaç malzemenin buharla bükülmesi yöntemiyle oluşturduğu sandalyelerden çok sayıda üretmiş ve satmıştır. Bu yöntem fazlaca el işçiliğine dayanmamışından ilk deфа olarak standart sandalyelerin ortaya çıkmamasına neden olmuştur.
4) Çağdaş tasarımın öncülüğünü yapan *De Stijl* ve *Bauhaus* ekollерinde ise süsten tamamen arınmış, toplu üretimin koşullarına uygun masif mobilyalar araştırılmış ve geliştirilmiş.

Bauhaus sonrasında da masif mobilya çağın yaşam biçimine, dinamizmine, ekonomik koşullarına uyarlamağa çalışılmıştır. Günümüzde mobilya tasarımlarında yukarıda bahsedilen akımların izlerini görmek mümkündür.

3) **Mobilyanın Yapımında Kullanılan Araçlar Yönünden Tarihsel Gelişim:**

1) *Balta ile Mobilya Yapımı:*
Balta ile yapılmış çok az sayıda mobilya günümüze kadar gelebilmiştir. Oyma ve yontma ile kaba birleştirmeye şekilleriyle yapılmış olan sandık, masa, sandalye tipi bazı mobilyaların halen Avusturya, İsveçre ve İskandinav ülkelerindeki müzelerde bulunduğu belirtilmektedir.

2) *El aletleri ile Mobilya Yapımı:*
Bu dönem orta çağın ilk yarısından 19. yüzyıla kadar devam etmektedir. Balta, keser, testere, matkap ve keski gibi aletler geliştirilmiş ve yüksek değer ve kalitede el yapımı sanat eserleri ortaya çıkarılmıştır.

3) *Makineler ile Mobilya Yapımı:*
19. yüzyılda bugünün aletleri olarak makineler geliştirilmiş; daha ucuz ve kaliteli, serilerde üretimi gerçekleştirilerek günün taleplerini hızlı bir biçimde sağlama yoluna giden makinelerdir.

4) **Mobilyanın Sınıflandırılması:**
Mobilyaları iki ana grupta sınıflandırmak mümkündür.

A) *Hammadde ve Konstrüksiyon şekillerine göre;*

- 1- Ana hammaddesi kereste olan masif oyma (klasik) mobilya,
- 2- Ana hammaddesi kereste olan masif modern mobilya,
- 3- Ana hammaddesi levha olan kaplamalı modüler monobiyal,
- 4- Ana hammaddesi metal olan metal aksamlı mobilya,
- 5- Ana hammaddesi plastik olan plastik mobilya.
B) *Kullanım Yer ve Amacına göre;*

1- Ev Mobilyası -- Oturma grubu
 Yemek odası
 Yatak odası
 Bahçe mobilyası
 Hol mobilyası

2- Okul Mobilyası --- Küürsü
 Sıralar
 Yazı tahtası

3- Büro Mobilyası -- Masa
 Koltuklar
 Sandalye, sehpa vb

4- Kent Mobilyası--- Otobüs durakları
 Trafik lamba ve işaretleri
 Çocuk bahçeleri vb.

5) *Türkiye’de Mobilya Üretimi:*

Mobilyaya tarihsel açıdan bakıldığında geleneksel Türk evinde sedir, dolap gibi sabit mobilyaların önem kazandığı, yemek yenileceği zaman sini, yatılacağı zaman dışarı döner dolaptan çıkartılarak odaya farklı fonksiyonların kazandırıldığı görülür. Ancak her fonksiyona göre ayrı ayrı üretilen mobilyalar Avrupa etkisiyle önem kazanmış, Osmanlı dönemi İstanbul’undaki saraylar, köşkler, yalılar ve resmi binalarda yaygınlaşmıştır.

Ülkemizde 1970’li yıllardan sonra odun kökenli levha sanayindeki gelişmeye bağlı olarak mobilya sanayide gelişmeye başlamış olup; nüfus artış ve kentleşmeye bağlı olarak mobilya tüketimi de artmıştır.

Günümüz için geçerli biçimleri tercih eden bazı firmalar çoğunlukla ağaçtan elde edilen yarı mamulleri kullanarak genellikle ucuz mobilya üretmeye çalışmaktadır. Ancak bu mobilyaların tasarım ve işçilik açısından temiz bir çizgiye geldiğini söylemek zordur. Diğer tarafından marangozlar her simte, her mahallede istediği gibi mobilya üretmektedirler. Bu nedenle mobilya yapımı için Türkiye’de yılda ne kadar ağaç tüketildiğini, bu alanda kaç kişi çalıştığını belirlemek oldukça güçtür. Ülkemizde hiçbir standarda, hiçbir denetime, hiçbir anlayışa bağlı kalmadan ağaç malzemeleri tüketilmektedir. Bu atölyelerin kapasiteleri de vardır. Çoğu hiçbir tasarımcıdan yardımcıda yardımcı olmamaktadır.

Bugün ülkemizde orman sanayinin içinde faaliyet gösteren mobilyacılık, çoğunlukla küçük atölyeler halindeydir. Bunu DİE tarafından yapılan çalışmalar açık ve net olarak göstermektedir. 1984 yılında DİE tarafından yapılan çalışmadan 148 büyük (10 ve daha fazla işçi çalıştıran), 12105 küçük (10 kişiden az işçi çalıştıran) işçi olduğu tespit edilmiştir. Bunların ortalama kurulu kapasiteleri 16 milyon m³/yıl olup, fiili kapasiteleri 6.5 milyon m³/yıl dir. Yani söz konusu kuruluşlar % 40 kapasite ile çalışmaktadırlar.

B- ORMAN ÜRÜNLERİ SANAYİİ

1) Orman Ürünleri Sanayii Nedir?
Orman Ürünleri Sanayii; ormanlardan elde edilen odun hammaddesini yarıma, kesme, soyma, biçim, şekil değiştirme, yorgalayarak veya liflerine ayırarak ve yapıtçı maddeler kullanarak veya kullanmadan presleme, buharlama, kurutma ve empreyete etme ve benzeri işlemlerle bünüyesini değiştirmeden veya mekanik veya kimyasal yollarla değiştirmek suretiyle, yarı mamul veya mamul mal üreten, gerektiğinde birinin mamulünü hammadde olarak kullanman, entegre düzende üretim yapan tüm sanayi kollarını içine alan odun sanayi ile orman ağaçlarından elde edilen reçine, sığla yağı, kabuk, palamut, defne yapraki, katran gibi ormanın ikincil ürünlerini işleyerek gıda, boya, kimya, parfüm sanayii gibi sanayilere yarı mamul madde üreten ikincil orman ürünleri sanayiinden oluşur.

Ülkemiz alanının yaklaşık %26’sını kaplayan 20.2 milyon hektarlık bir orman alanı ile degerlendirerek, bu doğal kaynağın ülke ekonomisine katkısının sağlanması amacıyla güden ve bu maksatla faaliyetlerde bulunan orman ürünleri sanayii; irili ufaklı binlerce işletmeden oluşan imalat sanayisinin alt sektörüdür. Bu sektör kendi içerisinde alt sektörler ve faaliyet gruplarına ayırılmaktadır.
Hammadde odunun işlenmesindeki amaca ve uygulanan teknolojilere göre bu sanayii;

1) **Birincil İmalat Sanayii Ana Grubu:** Odunu doğrudan hammadde olarak kullanan sanayii çeşitleri olan kereste, ambalaj sandığı, levha sanayi, kağıt hamuru ve kağıt sanayi,

2) **İkincil İmalat Sanayii Ana Grubu:** Bu grup birincil imalat sanayisinde elde edilen yarı mamul ürünleri hammadde olarak kullanan ahşap parke, doğrama, mobilya, karoser, prefabrik ev vb sanayi,

3) **Diğer Orman Ürünleri:** Özel üretime gerektiren kalem, müzik aletleri, ayakkabı dolabı, ahşap oyuncak, silah dipçği vb.,

4) **Orman Tali Ürünleri Sanayii:** Ağaçın kabuğu, yaprağı, meyvesi, tohumu, reçinesi, sigla yağı, vb ürünleri değerlendiren sanayi kollarından meydana gelmektedir.

İşyeri sayısı bakımından ülkemiz Orman Ürünleri Sanayi toplam 37 426 işçi ile imalat sanayisinin % 19.32’sini oluşturmaktadır.

2) **Türkiye’de Orman Ürünleri Üretimi:**
Ülkemizde Orman Ürünleri üretimi bakımından eskiye nazaran büyük bir gelişme söz konusudur. 1950-1978 yılları arasındaki devrede
ormanlarımızdan elde edilen ası́l ürünlerin üretim gelişimi aşağıda verilmiştir.

<table>
<thead>
<tr>
<th>ÜRÜNLER</th>
<th>YILLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomruk (m³)</td>
<td>113x798</td>
</tr>
<tr>
<td>Tel direği (m³)</td>
<td>216x798</td>
</tr>
<tr>
<td>Maden direği (m³)</td>
<td>86078</td>
</tr>
<tr>
<td>Sanayi odunu (m³)</td>
<td>22238</td>
</tr>
<tr>
<td>Kağıt ve lif odunu (m³)</td>
<td>---</td>
</tr>
<tr>
<td>Endüstriyel odun (m³)</td>
<td>730087</td>
</tr>
<tr>
<td>Yakacak odun (m³)</td>
<td>5556774</td>
</tr>
<tr>
<td>Toplam üretim</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Ülkemizde çeşitli orman ürünleri işlenerek endüstride kullanılmakta ve kereste, kaplama, kontrplak, yongalevha, liflevha, kağıt, karton vb üretimi yapılmaktadır.

Ağaç malzeme kullanım alanlarını 3 grup halinde verip, bu gruplara giren dallardan en önemli olanları üzerinde duracağız.

3) Ağaç Malzeme Kullanım Alanları
3-1) Yuvarlak Halde Kullanılan Ağaç Malzeme

A- Tel Direkleri:
Tel direkleri, telefon, telgraf gibi telekomünikasyon amaçlarında kullanılmakla birlikte, ayrıca elektrik enerjisi hatlarını taşıyan materyaldır. Bunlar ağaç, beton ve demirden yapılabilmektedir. Çeşitli özelliklerini bakımından bu maksatla en fazla ağaç direkler kullanılmaktadır. Ülkemizde köy elektrifikasyonunun son yıllarda önemli derecede artması, ağaç direklerin sarfını hızlandırmış bulunmaktadır.

Ülkemizde PTT maksatlarında yaklaşık olarak yılda 100.000 m³, TEK ihtiyacı için yılda yaklaşık 150,000 m³, Milli savunma Gereksinimi için ise yılda 5,000 m³ olmak üzere toplam olarak 255,000 m³ tel direğinin teminine gerek bulunmaktadır.
Ağaç tel direği olarak ağaç malzemenin seçiminde en önemli faktör gövde şeklidir. Seçilecek ağaçların gövdelerinin düzgün, enine kesitlerinin dairesel olması ve gövde dolgunluğunun yeterli bulunması gerekmektedir. Özel ağırlığı orta derecede olan ağaç türlerini bu maksat için daha elverişlidir.

Ülkemizde tel direği olarak Sarıçam, Karaçam, Kızılçam, Doğu Ladini, Sedir, Göknarlar, Meşe, Kestane ve Arıç kullanılmaktadır.

B- İskel ve Temel Direkleri:
İskel ve temel direkleri, üzerlerindeki ağır yapıları taşıma maksatı ile kullanılmaktadır. Ağaç direklerin bu maksatla kullanıma neden dirençlerinin yüksek olması, çarpma esnasında enerjiyi absorbe edebilmesi, taşınma kolaylığı, daha az masrafla temin ve tesisinin mümkün olması ve iyi bir şekilde emprende edildiği taktirde dayanıklı olduğunu. Bu maksatla Çam, Melez, Meşe, Kestane kullanılmaktadır. Ülkemizde çoğunlukla iskel direği olarak Sarıçam kullanılmaktadır.

C- Çıt Direkleri:

D- Maden Ocaklarında Kullanılan Ağaç Malzeme:
Ağaç malzeme maden ocaklarında dış yapı tesislerinde, kuyularda, galerilere ve esas madenin çıkarıldığı yerlerde kullanılmaktadır. Buralarda kullanılan ağaç malzeme biçimli, yarımsız veya yevarlıklı halde bulunmaktadır. Ülkemizde en fazla kullanılan yer %90 oranında olmak üzere taş kömür ocaklarında, %8 linyit ocaklarında, %2 oranında ise diğer maden ocaklarında bulunmaktadır.

Doğal dayanıklılık bakımından en uygun olarak beyaz Meşeler ve yalancı Akasya bu amaçla kullanılabilir. Ancak bu ağaç cinsleri fazla ağır

3-2) İşlenmiş Halde Kullanılan Ağaç Malzeme

A- Demiryolu Traversleri:

Ağacından yapılmış traversler çelik ve beton traverslere nazaran aşağıdaki özelliklerden dolayı üstünlük göstermektedirler:

- Elastikiyet ve direncin yüksek oluşu,
- Ekonomik bulunusu,
- Kolayca doğal kaynaklarımızdan temin edilebilmesi,
- Elektriği iletmemesi,
- Aşırı çarpma etkilerini ve gürültüyü absorbe etmesi,
- Çivi ve vida tutma kabiliyetinin yüksek bulunusu,
- Asit ve bazlar tarafından etkilenmemesi,
- Hafif oluşu,
- İşlenme kolaylığının bulunusu,
- Aşırı ısı ve dondan zarar görmemesi,
- Gelen yükleri kırmı taş yatağına yeknesak bir şekilde dağıtması ve kırmı taş yatağının tanziminin kolay oluşu.

B- Kereste Endüstrisi:
Ağaç biçme endüstrisi olarak da adlandırılabilir. Ülkemizde ilk kurulan endüstrilerdendir. Özel ve kamu kurumlarına ait 7983 tesisin tek vara they üzerinden yıllık toplam kurulu kapasiteleri 11.964.465 m³ tür. Özel sektörde ait kereste sanayisinin büyük bir bölümünü küçük kapasiteli ve 5-6 kişi ile çalışan tesisler meydana getirmektedir. Bunlar aile işletmeciliği şeklinde olup kapasite kullanım oranları %30’un ardından. Bu tesislerden bazıları çevresel olarak çalışmaktadır. Mesela, yılda 2-3 ay çalışarak genellikle köylüye dağıtılan zati yapacakları yapmak için, özel verim elde etmek için.

C- Kibrit Endüstrisi:

Bugün ülkemizde dört kibrit fabrikası mevcut olup, bunlar Tekel, Türkay, Kav ve Malazlar kibrit fabrikalarıdır. Bu fabrikalarda yılda yaklaşık olarak 30 000 m³ kibritlik kavak tomruğu kullanılmaktadır. Bu endüstride Kavak ağacının tercih edilmesinin sebepleri şu şekilde açıklanabilir:

a) Kavak odunun yapısı yeknesaktır,
b) Odunu yumuşak olması dolayısı ile kolay soyulur,
c) Rengi beyazdır, kolayca başka renklere boyanabilir,
d) Kimyasal maddeleri absorbe etme kâbiliyeti yüksektir,
e) Yandığı zaman fazla is çıkarmaz.

D- Kaplama Endüstrisi:
Kaplama odunun 0.50 mm ile 8 mm kalınlıkları arasında kesilmesi, biçilmesi veya soyulması suretiyle elde edilen ince levhalardır. Kaplammanın mobilya sanayiinde son derece önemli bir yeri vardır. Kaplammanın kalitesi, renk ve desen bütünlüğü mobilyanın kalite ve değerinin artmasıyla yakından ilgilidir.

Ülkemizde büyük bir kısmı kesme sistemi ile çalışan 33 kaplama üretme tesislerinin yıllık toplam kapasiteleri 50 milyon m²'dir. Bu sanayide kaplama kulanım oranının %65 civarında olduğu tahmin edilmektedir. Genel olarak bu sanayi kolu fason üretimi yapmaktadır. Kaplama endüstrisinde kaplama üretimi amacı ile Ceviz, Karaağaç, Dişbudak, Meşe, Kayın, Kavak, Çam, Çınar ve Akçaağaç gibi yerli ağac cinslerimizden başka yabancı ağaçlardan Kuşgözü, Okume, Abachi, Limba, Sapelli, Teak, Meranti gibi türlerde kullanılmaktadır.

E- Kontrplak Endüstrisi:
Kontrplak, yuvarlak odunun soyma makinelerinde dıştan merkeze doğru soyulması ile elde edilen soyma levhalarının lifleri birbirine dik olmak üzere üç veya tek sayıda daha çok levhanın üst üste konularak basınç altında yapıtırılmasıyla elde edilen plakadır. 3, 5, 7 veya daha fazla tek sayıda, ince soyma kaplamadan yapılan kontrplaklarda birbirini takip eden tabakaların liflerinin dik olarak konulmasının nedeni, rutubet karşısında farklı yönlerdeki çalışmaya engel olmaktır. Halen faaliyette bulunan 20 adet kontrplak fabrikasının toplam kapasitesi 122 000 m³/yıl olup, kapasite kullanım oranı % 35-37 gibi düşük bir seviyededir.

Kontrplak endüstrisinde kullanılacak ağac cinslerinde aranacak en önemli özellik soyma makinelerinde nispeten kolaylıkla ince tabakala soyulabilmeleridir. Ülkemizde kontrplak fabrikalarında çoğunlukla Kayın işlenmektedir. Ayrıca Çam, Kavak, Okaliptüs ve Kızılağaç’tan da kontrplak üretilmektedir.

Kontrplakların masif oduna nazaran şu üstün özellikleri vardır:
a) Çalışma en düşük seviyeye indirilmiştir,
b) Ağacın kapsadığı çeşitli kusurlar ortadan kaldırılmıştır,
c) Her yerde aynı dirence sahip malzeme temin edilmiştir,
d) Geniş yüzeyli stabil malzeme elde edilmiştir,
e) Odunun renk hataları gizlenebilmektedir.

F- Kontrtabla Endüstrisi:
Kontrtabla, orta tabakası genellikle çatalardan yapılmış ve iki yüzeye en az birer levhanın basınç altında yapıtırılmasıyla meydana gelen bir materialı. Ülkemizde fazla gelişmemiş bir sanayi kolu olup, MKE ait 3200 m³/yıl kapasiteli bir tesis ile özel sektöre ait 2000 m³/yıl kapasiteli diğer bir tesis bulunmaktadır. Genellikle kereste fabrikasının artıklarını degerlendirmesi gereken bu sanayi kolu, hammadde bakımından yonga ve lifli ağac malzeme sanayi kolu ile rekabet halindedir. Askeri kullanım amaçlı olarak üretilmektedirler.

G- Ambalaj Endüstrisi:

H- Parke Endüstrisi:

İ- Yongalevha Endüstrisi:
Yongalevha özel olarak hazırlanı oyun yongalarının uygun yapıtırılabilirlerle karıştırlarak basınç altında sıkıştırılmasıyla elde edilen

Yongalevha endüstrisinde yuvarlak veya yarılmış haldeki küçük boyutlarda gövde ve dal kısımları kullanıldığı gibi çeşitli ağaç işleyen endüstri artıklarından da bu maksatla yararlanılmaktadır. Yongalevha özellikli mobilya endüstrisinde kullanılan malzemelerdir. Bunun sebebi olarak yongalevhanın yapımından dolayı çalışma özelliğinin düşük ve her yönde aynı olması ve istenilen genişlikte yüzeyler vermesi gösterilebilir.

Bu sanayi kolu ülkemizde hızlı gelişme göstermiş ve kurulu tesislerin üretim kapasiteleri yıllık 1.474.000 m³'e ulaşmıştır. Ayrıca çimentolu yongalevha üretimi de ülkemizde yapılmaktadır. Bu levhalar dış yüzey kullanılanlar için daha elverişli olmaktadır.

J- Liflevha Endüstrisi:
Liflevha, lignoselülozik liflerin gerek yapıma özelliklerinden yararlanarak, gerekse yapıştırıcı maddeler ve bazı hallerde diğer katkı maddeleri katılarak preslenmeden veya hidrolik sıcak preslerde sıkıştırılarak levha halinde şekillenmiş iki katlı bir malzemedir. Ülkemizde halen çalıșmakta olan 1 adet kuru sistem ve 3 adet yaş sisteme sahip toplam 4 adet liflevha tesisi bulunmaktadır. Bunların yıllık toplam kapasitesi 110.600 m³ olup kapasite kullanım oranı %90 civardadır.

3-3) Odunun Bünyesini Değiştiren Kullanım Yerleri
Bunlar odunun bünyesini kimiyasal yollarla değiştirdikten sonra kullanılan endüstrilerdir. Bunların en başında selüloz kağıt sanayisi gelmektedir. Ayrıca odun kömürü, odun gazi, odun unu, odundan kimiyasal yollarla...
elde edilen selüloz, lignin, hemiselüloz, tanen, reçine, sakız gibi ürünler bu gruba girmektedir. Bu ürünlerin her biri değişik amaçlarla kullanım alanlarına sahiptir.

* Kağıt Endüstrisi:

KAYNAKLAR:
Kurutma Kusurları

Arş. Gör. M. Hakan AKYILDIZ
Prof. Dr. Hasan VURDU
Gazi Üniversitesi, Kastamonu Orman Fakültesi
Orman Endüstri Mühendisliği Bölümü

1. GİRİŞ

Teknoloji çağının getirdiği yeniliklere ve çok sayıda yeni malzemenin rekabetine rağmen ağaç malzeme sahip olduğu estetik güzelliği işlene kolaylığı ve sağlıklı kullanımı gibi önemli özelliklerinden dolayı kullanımı azalmadığı gibi her geçen gün artmaya devam etmektedir. Hafifliğine göre direncinin yüksek olması, kolay işlenmesi, iyi boyaya ve cila kabul etmesi, ısıyı alması, sesi absorbe etmesi gibi iyi özellikleri yanında, dış görünüşünün güzelliği ile kullanıldığı yerde sıcak ve hoş bir hava yaratmaktadır.

Bunun yanında, ağaç malzeme istenmeyen bazı özelliklerde ortaya koymaktadır. Organik bir madde olması nedeniyle çürüyebilmekte, kolay yanmakta, kuru iken bünyesinde su aldıında ve yaş iken su kaybettğinde ahşabın boyutları değişmektedir.

Modern ağaç teknolojisi ağaç malzemenin arzu edilmeyen söz konusu bu özelliklerini iyileştirici birçok yöntemi geliştirmiştir. Odunun doğal yapısını bozmadan arzu edilmeyen özelliklerini iyileştirmici teknik işlemlerin en önemlileri arasında; kurutma işlemi, buharlama işlemi, emprenye işlemi ve üst yüzey işlemi sayılabilmektedir (1).

2. KURUTMA

Kurutma, ağaç malzemenin bünyesinde tuttuğu kullanım yeri ve amacı için uygun olmayan suyun odunun bünyesinden atılması işlemidir. Ideal bir kurutmada, 1) kurutulacak malzemenin kalitesinin korunması, 2)
kurutma süresinin mümkün olduğu kadar kısa olması ve 3) kurutma giderlerinin en düşük düzeyde tutulması amaçları bir bütün olarak ele alınmalıdır (1).

Kurutma ağrılığı, boyut değişimi, mekanik özellikler ve mantar hastalıkları gibi faktörleri iyileştirmek amacı ile yapılmaktadır (2). Burada;

1- **Ağrılık:** Kurutma sonucu malzemede ağrılık azalmak ve bu ise istifleme ve taştıma kolaylıklar sağlamaktadır.

2- **Boyut değişimi:** Ağaç malzeme, kurutma ile kullanılacağı yerin denge rutubetine kadar kurutulduğu ve rutubeti ortam sıcaklık ve bağıl nemine uygun olarak bir dengeye ulaştığı için sonra kullanım yerinde rutubete dayalı boyut değişimi önlenmiş olmaktadır.

3- **Mekanik özellikler:** Kurutma sonucu mekanik özelliklerin büyük bir kısmında % 20 ile % 60 oranında iyileşme kaydedilmektedir. Bazı özelliklerde ise (mekanik eğilme direnci gibi) azalmalar görülmektedir.

4- **Mantar hastalıkları:** Mantarlar, % 20’nin üzerindeki rutubet derecelerinde ağaç malzemeye daha kolay arız olabilmekte ve gelişebilmektedirler. Kurutma ile ağaç malzeme rutubeti % 20’nin altında indirilerek mantarlar için uygun ortamlardan birisi yok edildiği için mantarların gelişimi sonucu oluşacak mantar hastalıkları önlenmiş olmaktadır.

2. 1. Kurutmanın Faydaları
Kurutma ile ağaç malzemeye birçok iyi özellik kazandırlamaktadır. Kurutma işlemi sonucunda ağaç malzemeye kazandırılan özellikleri şöyle sıralayabiliriz:

1- Kullanım ortamına uygun bir şekilde kurutulmuş ağaç malzeme, kuruluş derecesi muhafaza edilebilirse çürümesi önenebilir.

2- Ağaç malzemeyi dış etkenlere karşı korumak için uygulanan koruyucu yüzey işlemlerinin daha kalıcı ve başarılı olur.
3- Tutkallanma ve yapışma kabiliyeti artar.
4- Odunun işlenmesinde (örneğin planyalama, frezeleme, lambazıvana açma, delik açma, zımparalama gibi işlemlerde) net ölçüller ve daha düzgün yüzeyler elde edilir.
5- Kullanım ortamına uygun kurutulmuş ağaç malzeme hemen hemen hiç çalışmaz. Böylece kullanım süresince çatlama, çarpmalar, dönme gibi kusurların oluşması önlenir.
6- Odun mukavemeti, sertliği, çivi ve boyaya tutma kabiliyeti iyileşir (1).

2. 2. Kurutma Yöntemleri
Belli başlı kurutma yöntemlerini;
1- Doğal kurutma
2- Hızlandırılmış doğal kurutma
3- Teknik kurutma (Klasik kurutma, Kondenzasyonlu kurutma, Yüksek sıcaklıklarla kurutma, Kimyasal kurutma, Doğru veya alternatif akımla kurutma, Yüksek frekanslı akımla kurutma, Kızıl ötesi ışınlarla kurutma, Organik maddelerle kurutma, Vakumlu kurutma, Pres kurutma)

olarak üç ana başlık altında toplayabiliriz.

Teknik kurutmada ise, kurutmayı etkileyen dış kurutma faktörleri kontrol altında tutulabilmekte ve isteğe göre ayarlanabilmektedir. Böylece, odunun özellikleri, kurutmanın amacı ve kalite istekleri dikkate alınarak istenilen oranda kurutma yapmak mümkündür (1).
3. KURUTMA KUSURLARI

Kurutma sırasında meydana gelen ve ağaç malzemenin az veya çok kalitesini ve değerini düşüren çatlamalar, serilemler, hücre çökmesi, biçim değişmeleri, renk değişiklikleri gibi oluşumlar kurutma kusurları olarak anılmaktadır (1).

Kurutma işlemi sırasında oluşan biçim değişmesi ile ilgili kusurlar odunun, Lif Doygunluğu Noktasından (LDN) itibaren rutubet kaybettiğçe daralması sonucu oluşur. Fakat, rutubet eğiminin belirli sınırları aşması sonucu odunda oluşacak aşırı iç gerilmelerin neden olduğu farklı etkiler önemli kusurların oluşmasına yardımcı olur.

Rutubet dağılımının dengesiz olduğu kerestelerde, odun içerisinde daralma miktarındaki farklılık nedeniyle, özellik teğet yönde geniş olarak biçimlenmesi halinde çarpılmalar görülür. Ayrıca, kerestede mevcut olan doğal kusurlar, kurutma kusurlarını oluşturan sebeplerin etkinlik derecesini artırıcı rol oynar (3).

Kurutma tesisinin hatasız bir şekilde kurulması ve teçhiz edilmesi, kereste istifinin tekniğine uygun yapılması, kurutma şartlarının ağaç malzemenin özelliklerine uygun seçilmesi halinde; kurutma kusur ve kayıpların kabul edilebilir sınırın altında tutmak mümkündür. Gerekli özen gösterildiği takdirde kurutma kusurları nedeniyle meydana gelen değer kaybının % 3-5’i geçmeyeceği belirtilmektedir (4).

3. 1. Çatlaklar
3. 1. 1. Yüzey Çatlakları

Kurutmanın 2. evresi başlangıcında odunun yüzeyindeki rutubet iç kısımlara göre daha düşüktür. Bu nedenle, yüzey kısımlar daralarak iç kısımları sıkıştırır ve yüzey kısımlar çekme (+), iç kısımlar ise basınç (-) etkisinde kalır.

Odunun yüzey kısımlarındaki buharlaşma şiddetli değişle daralma miktarı da o ölçüde az olacağından gerilmeler düşük olur. Ancak şiddetli buharlaşma söz konusu ise daralma miktarı da o oranda fazla olacağından

3. 1. 2. İç Çatlakları

Ancak, çekme gerilmenin önceleri yüzey tabakasında gösterdikleri etkiye bu durumda orta kısımlarda göstererek iç çatlakların oluşmasına sebep olacaktır. Gerilme şiddet artırsa iç çatlaklar özellikle öz ışınları gibi zayıf kısımlarda fazlaştıracak. Böylece, dışarıdan görünümeyen ve “bal peteği oluşumu” denilen iç çatlaklar odunu kullanılmaz hale getirecektir (Şekil 1). Bu durum özellikle Çeviz, Meşe gibi geniş öz ışınlı ve daralma miktarı fazla olan odunlarda daha sık görülür (3).
Şekil 1: Uygun şartlarda kurutulmamış bir Meşe odunu enine kesitinde bal peteği şeklindeki iç çatlaklar.

Odunun liflerine dik yönde gösterdiği çekme direnci sıcaklık etkisi ile azaldığından çatlak oluşumunda sıcaklık büyük rol oynar. Bu çatlaklar dışarıdan görülememekle birlikte kereste liflere dik yönde kesildiğinde enine kesitler üzerinde ortaya çıkmaktadır. Şiddetli sertleşmenin sonucu oluşan iç çatlakları ağaç malzemenin kullanımını sınırladığı için kullanım sırasında iç çatlaklarını göz ardı etmek olanaksızdır (1).

3. 1. 3. Uç (Enine Kesit) Çatlakları
Kerestenin uç kısımlarındaki şiddetli buharlaşma rutubet akışi lifler yönünde teğet ve radyal yönlere göre çok daha kolay olmasından kaynaklanmaktadır. Bu ise uç kısımların diğer kısımlardan daha çabuk kurumasına neden olur. Şiddetli buharlaşma ve çabuk kurumaya bağlı uç (enine kesit) çatlakları oluşur. Hızlı buharlaşmanın uygulandığı kurutma şartlarında uç çatlaklarının oluşumundan kaçınmak imkansızdır (2).

3. 1. 4. Çatlak Oluşumuna Karşı Alınabilecek Önlemler
Kurutma işlemi sırasında şiddetli bir buharlaşma (çok düşük bağlı nem ve yüksek bir hava hızına bağlı olarak) odunda çatlak oluşmasını başlica sebebdir. Bazı sert odunlu yapraklı ağaçlarda (Meşe ve Kayın gibi) daralma miktaranın fazla ve öz ışınlarının geniş olması çatlamayı
artılmaktadır. Bu nedenle, bu tür odunların rutubeti LDN üstünde iken hava hızı yüksek uygulanyorsa o ölçüde yüksek bir bağlı nem uygulanarak kurutulmaları önerilmektedir. Dolayısıyla Meşe ve Kayın gibi odunların kurutulması sırasında % 25 - 30 rutubete kadar 40-50 °C gibi düşük sıcaklık ve φ > % 80 olmak üzere yüksek bir bağlı nem uygulanması çatılar oluşumunu önleyen tek çare olmaktadır.

Açık hava koşullarında kurumaya bırakılan yaş haldeki odunda yüzey çatılarlarını önleyebilmek için buharlaşmanın şiddetli olduğu yaz ve sonbahar aylarında odunu, doğrudan doğruga güneş ışını ve çok kuru hava etkisine karşı korunmak gerekliydir. Bu nedenle, istifler üzerinde çatı ve güneş siperleri; Meşe ve Kayın gibi türler için hava hızını düşürmek amacıyla istifler arasında içe çıtalar kullanılabilir.

Doğal ve teknik kurutma sırasında oluşabilecek üç çatıların önlenmesi için ise buharlaşmanın yavaşlatılması veya enine kesitlere çatlamayı önleyici yağlı boya veya mumlu gereçler sürlümü önerilmiştir (2, 3). Örneğin, değeri yüksek olan ağacı kerestelerin uçları parafine veya polietilenglikole batırılabilir (1).

3.2. Sertleşme (Kabuklaşma)
“Sertleşme halı” veya “kabuklaşma” kereste kurutma işlemlerinde sıkıla=localhostra rastlanan bir kurutma kusurudur.

Önelemler:

Sertleşme hali, sonradan göz ardı edilmesi güç olan, uygun olmayan şartlar altında kurutulma sonucu kereste oluşturan önemli bir kusurdur. Bu tür keresteler kuvvetli kuruma gerilmeleri nedeniyle işlemeye ve kullanma sırasında çatlamaktak ve şekline değiştirilmektedir. Bu nedenle...

Şekil 2. Sertleşme halı örnekleri:
a) Hızlı kuruma halinde dışta çekme, içte basınç gerilmesi,
b) Sertleşme hali ile dışta basınç, içte çekme gerilmesi oluşması.
kurutmanın başlangıcında daha ilk belirtileri görüldüğü zaman havanın bağlı nemini yükseltici tedbirler alınmalıdır.

Sertleşmenin ilk belirtisi olan yüzey çatlakları görüldüğünde derhal tedbir alınmazsa yüzey çatlakları hemen kapanmaktadır. Bu ise iç kısımlarda çekme gerilmelerinin oluşumunun bir göstergesidir. Sertleşmenin ilk aşama sayılan bu durum çok kısa sürmesi nedeni ile çatlakların kapanması gözden kaçabilmektedir.

Kerestede çok sayıda kılcaldan yüzey çatlakları ortaya çıktığı an kurutma fırını bacakları açıksa kapatılmalı ve buhar püskürtülmelidir. Kabuklaşma tehlikesinin geçip geçmediği çatal örnekler yardımıyla anlaşılmaktadır (1).

3. 3. Hücre Çökmesi (Kollaps)

Kollaps oluşumu iki şekilde açıklanabilir:

a) Kollapsa uğrayan hücrelerin tamamen su ile dolu olduğu kabul edilir. Hızlı buharlaşma sırasında su, hücre zarlarından süratle geçerken hava girişinde olmadığı taktirde hücre içerisinde oluşacak vakum hücrenin çökmesine sebep olur ve gerilmeler arıtarak içeriğide hücreleri ezer. Gerilmelerin artması oranında çatlamalarda artar.

b) Yaş odun çok kuru bir havada kurumaya bırakılsa odun yüzeyi hızla kuruyarak bu kısımlarda çekme gerilmeleri oluşur. Yüzeyde çatlama meydana gelmediği taktirde daralan

3. 3. 1. Kurutma Şartlarının Kollaps Oluşumuna Etkisi

a) Sıcaklığın Etkisi: Kurutma sıcaklığı yükseldikçe kollaps oluşumu artmakta ve odunun eski haline dönüştürülmesi güçlemektedir. Sıcaklık yükseldikçe artan su buharı gerilimi hücre ezilmelerine yol açmaktadır. Plastikleşme arttığından mekanik özellikleri düşer. Bu şartlardaki odun elastikiyet sınırına ulaşığında eski haline dönüştürülme ihtimali ortadan kalkar. Kollaps Meşe ve Kayın gibi odunların doygun halde iken yüksek sıcaklıkta (t>58 °C) kurutulması sırasında görülmekle birlikte bazı odunların doğal olarak kurutulmaları sırasında da oluştuğundan sıcaklık nispi veya bağılı bir faktör olarak değerlendirilir.

b) Bağıl Nemin Etkisi: Havanan bağıl nemlik yükseldikçe (Δt düştükçe) kollaps artmaktadır. Kurutma başlangıcında Meşe ve Kayın gibi türler için yüksek bağıl nem uygulamak gerektiğinden kollaps oluşumu tehlikesi de artar.

c) Kurutma Süresinin Etkisi: Sıcaklığı bağlı olmaksızın kurutma süresi uzadıkça kollaps artma eğilimindedir. Bu etki 60 °C sıcaklıkta 100 °C sıcaklıkta daha azdır (3).

3. 3. 2. Kollapsın Onarılması

İç çatıklar oluşmayışsa kollaps kısmen onarılabilmektedir. Bunun için kollaps oluşan odunlar yüksek sıcaklıkta (70 – 100 °C) su olarak püskürtülerek ağaç türü, kalınlık, kollapsin derecesi ve uygulanan sıcaklık göre 4 – 12 saat süre ile bekletilir. Böylece hücre cepheri yeniden
rutubet alarak şişer ve oduna bir miktar elastiklik kazandırmak eski şeklini almaya sağlar. Kollaps onarımı sırasında odun bir miktar rutubet alacağını ve yeniden kurutulması gerekir. Kollaps oluşmasından sonra böyle bir işlemle eski haline dönüştüren odun yeniden kurutulurken kollaps oluşumunun tekrarlanması tehlikesini göstermez (3).

Kollapsın Onarılmasını Etkileyen Faktörler

1. **Sıcaklık:** Kollaps tamamen düzeltilememekte ancak, yüksek sıcaklık uygulanması halinde maksimum iyileşme sağlanabilmektedir. Uygulanan sıcaklık yükseldikçe düzeltme işlemi için geçen sürede kısaltmaktadır. Kollaps oluşması yüksek sıcaklık ve bağıl nem şartlarında yapılan bir kurutma sırasında oluşmuşa onarılması da o ölçüde zor olmaktadır.

2. **Odun Rutubeti:** Kollapsın onarılması işlemi %15-16 odun rutubetinde en iyi sonuç vermektedir. Daha düşük rutubetlerde bu işlemin uygulanması, istenen sonucu vermediği gibi odun yeniden rutubet alacağından ve düzeltme işleminden sonra tekrar kurutulması söz konusu olacağını zaman kaybedilecektir.

3. **Kurutma Süresi:** Yüksek sıcaklıkta kurutma sırasında süre uzadıkça kollaps derecesi artmaktadır. Kollapsın onarılması sırasında uzun kurutma süresi düzeltmeyi zorlaştırmaktadır (3).

3. 3. 3. Kollaps Oluşumuna Karşı Alınabilecek Önlemler

Yüksek oranda rutubete sahip odunun yüksek sıcaklıkta kurutulması halinde kollaps oluşmaktadır. Öyleyse kollaps oluşumundan sakınmak için çok rutubetli odunları firında kurutmadan önce bir süre doğal yolla kurutmalı ya da firinda kurutma sırasında çok rutubetli odunlar %20-25 rutubetede ulaşınca kadar 40–45 °C gibi düşük sıcaklıklar uygulanmalıdır. Çok rutubetli odunların bir süre doğal yolla kurutulduktan sonra firında kurutulması daha ekonomik olduğu gibi genellikle daha olumlu sonuç vermektedir.

Kurutma işleminden önce odunların amonyum karbonat gibi bazı kimyasal maddelerle emprenye edilmesi önleyici tedbir olarak uygulanmaktadır. Bu tuzlar ısı etkisi ile gazların hücre içersine
yayılımasını sağladığından hücre içerisindeki suyun hızlı hareketi sonucu oluşan hücre çökümleri önlenebilmiyordur (2, 3).

3. 4. Biçim (Şekil) Değişmeleri

Biçim (şekil) değişimleri, kurutma işlemi sırasında, kuruma sonucu ağac malzemenin çeşitli düzlemlerde meydana gelen farklılaşmalar olarak tanımlanabilmektedir.

TS. 697 (1969)’a göre “Çarpılmalar” adı altında toplanan şekil değişimleri oluşlaşma, eğilme, kılıçına eğilme ve burulma şeklinde isimlendirilmiştir (5).

Bunun yanında, özellikle kare kesitli ve enine kesitte yıllık halkaları kenarları ile 45 derecelik açı teşkil eden ağac malzemede görülen şekil değişimlerine “mainleşme” denmektedir (1).

Kurutma işlemi sırasında oluşan bu değişimlerin miktarı ağac türü, kerestenin boyutları, biçme şekli, yıllık halkalara ve ağac gövdesinden aldığı yere, taşıdığı doğal kusurlar ve istifleme gibi kusurlara bağlıdır. Hatalı istiflemelerde kereste eğilmeye zorlayan etkiler altında kalabilir. Aynı şekilde istif katları arasında hava hareketini sağlayan boşluklar eşit olmadığı durumda kerestenin alt ve üst yüzeyleri arasında önemli kuruma farklılıklar meydana gelebilir. Kuruma sırasında kerestenin çeşitli kesitlerinde meydana gelen rutubet farklılıkları ve üç farklı yönde çalışma miktarlarının eşit olmadığı nedeniyle başlangıçta düzgün olan kenar, yüzey ve profil şekillerinde farklılaşmalar meydana gelmektedir (2).

3. 4. 1. Biçim Değişmelerinin Önlenmesi
Kurutma işlemleri başlangıçta ve kurutma işlemi sırasında alınacak çeşitli önlemlerle bu şekilde meydana gelen kusurlar en aza indirilebilmektedir. Örneğin, istifin tekniğine uygun yapıldıktan sonra kurutma işlemi sırasında, kurutmadan doğan gevşemeleri kurutma boyunca giderecek şekilde vidalı germe demirleriyle veya istiflerin üzerine konan ağırlıklar, örneğin beton bloklar yardımıyla sıkışık durumda tutulmaları sağlanabilmektedir.

Vantilatörlerin istife çok yakını yerleştirilmesi, düzenli olmayan hava sırkülasyonu, istıma ve nemlendirme buharı sevkiyatı gibi kurutma firıncıdaki yapı hataları ve kurutma programlarının hazırlanması ve
uygulanmasında yapılan hatalar da şekil değişimlerine sebep olabilmektedir (1).

3. 5. Renk Değişmeleri

Odunda dengeli bir şekilde veya yüzeyse olarak oluşan renk değişimleri kusur olarak kabul edilmemektedir. Ancak, şeritler veya lekeler halinde bulunan renk değişimlikleri, özellikle derinleşen renk değişimleri estetik açısından önemli bir kusur sayılacaktır. Bunlar, ağaç malzeme yüzeylerine birikmiş bulunan suların yüzeyden buharlaşması sırasında odundaki renkli maddeleri çözmesi suretiyle oluşmaktadır. Tanen miktarı bakımından zengin olan ağaç türlerinde bu şekildeki renk değişimleri fazla miktarda görülmektedir (1, 4).

Önlemler
Ağaç malzeme rutubeti lif doygunluğu rutubet derecesine ulaşmaya kadar kurutmayı düşük sıcaklık ve yüksek olamanın birim nem uygulayarak sürdürmek, kerestelerin yüzeylerini yonga, talaş, kabuk gibi artıklardan temizleyerek, kerestelerin demir gibi metal aksamlarla temasını engelleyerek ve temiz istif lataları kullanarak teknik kurutmada oluşan arzu edilmeyen renk değişimleri önlenbilmektedir (1).

3. 6. Reçine Sızması
Teknik kurutmada, reçine bakımından zengin ağaç odunlarının (çam, ladın gibi) yüksek sıcaklıkta kurutulması reçineyi ağaç malzemenin yüzeyine çıkarmaktadır. Bu ise ağaç malzeme yüzeyinin yağlı bir görünüş almasına ve zamanla sıcaklığın etkisi ile yüzeyin kahverengine
dönüşmesine neden olmaktadır. Bazı hallerde de yüzeye çıkan reçine tabakası, reçinenin uçucu kısımlarının (terebentin) ayrılması ile sertleşmekte (kolofan) ve ağaç malzemeyi işlenmesi güç bir hale getirmektedir (1).

Önlemler
Çoğu zaman bir kurutma kusuru olarak görülmeyen reçine sızmasi, yüzeyde ince ve sert bir tabaka halinde bulunacak olursa ağaç malzemenin rendelenmesi, tutkallanması ve yüzey işlemleri uygulanması sırasında sakıncaya oluşturmaktadır. Kurutma sonunda reçine sızmasinın arzu edilmemesi durumlarında kurutmada uygulanan sıcaklığın düşük tutulması uygun olmaktadır (1).

KAYNAKLAR
Ülkemizde Üretilen Orman Yan Ürünleri Ve
Değerlendirme Olanakları

Arş. Gör. Saim ATEŞ
Gazi Üniversitesi, Kastamonu Orman Fakültesi
Orman Endüstri Mühendisliği Bölümü

1-GİRİŞ

Ormanlardan elde edilen odun asli ürününden sonra faydalanma açısından en önemli yer orman yan ürünleri almaktadır.

Ülkemizde orman yan ürünleri çok çeşitli olup, yapılan incelemelere göre tüm orman ürünleri ihracat değerinin % 60’ını teşkil etmektedir. Bu yan ürünleri başlıca şu şekilde incelemek mümkündür: Reçine, kabuk, sığla yağı, mazı, palamut, defne yaprağı, çam fıstığı, harnup, mahlep, v.b.

Ülkemizde halen üretimi yapılmakta olan reçine ve sığla yağı en önemli yan ürünlerden olup, bu tür yan ürünlerden elde edilen uçucu yağlar ve kimyasal maddeler, başta ilaç sanayi olmak üzere kozmetik, gıda ve deri sanayiinde kullanılmaktadır. Ülkemizde orman yan ürününün çok çeşitli olması hem bu tür ürünlerin bulunduğu bölgelerdeki kırsal kesim halk kitelerine iş istihdamının sağlanması hem de ülkemize ekonomik açıdan önemli katkıda bulunması sebebiyle üretimlerin gerektiğini ölçülerde yapılması ve yaptırılması büyük faydalar sağlayacaktır.

Buna paralel olarak yan ürünlerin değerlendirilmesi ile birlikte bu sektöre dayalı sanayi kuruluşlarının da gelişme göstereceği imkan dahilindedir.

1-Reçine

Ülkemizde yaygın olarak bulunan işğne yapraklı ağaç türlerinden özellikle de kızılçam ağaçlarından odun dokusunun yaralanmasıyla dışarıya sızan,
çeşitli yöntemlerle üretimi yapılan ve reçine adı verilen hammadde endüstriyel açıdan önemli bulunmaktadır. Reçine ilk olarak XVI. Yüzyılın sonlarına doğru gemi yapımcıları tarafından tekne, güverte ve halatların suya karşı korunmalarında kullanılmıştır. Reçine terabentin yağı ve kolofan olmak üzere iki ana bileşenden oluşur. Reçine üretimi ya dikili ağaçlardan çeşitli alet ve araçlar kullanılarak veya da reçineli odun yongalarının bazı çözücüler kullanılarak destile edilmesi sonucunda elde edilir.

Reçine miktarı bir meşceredeki ağaçlar arasında farklılıklar gösterebileceği gibi ağaçın çeşitli kısımlarına göre de farklılıklar gösterir. Bir ağacda reçine miktarı en çok değerden en az değer olarak azalmak suretiyle kökler ve kütük kısmı, gövdenin dipten 2 m ye kadar olan kısmı, dal odunu, dallı gövde kısmı, dalsız gövde kısmı ve kabuk takip etmektedir. Görüldüğü gibi bir ağaçın gövdesinin endüstriyel odun değeri en yüksek olan gövde kısmı reçinece daha fakirdir. Ayrıca öz odunu diri oduna oranla daha fazla reçine oranına sahiptir. İşne yapraklı ağaçlardan elde edilen terabentin yağı ve kolofandan ibaret olan reçine bugün endüstride çok önemli bir yer tutmaktadır.

Terabentin yağı; vernik, yağlı boya, mum, reçine, yağ, temizleyici, leke giderici, ayakkabı boya ve cilalı, linolyum ve parke cilalı, yapay kokulu maddeler, güzellik bakım maddeleri, sentetik kafuri ve kauçuk yapımı gibi alanlarda değerlendirmekteidir.

Kolofan ise; harp endüstrisinde şarapnel yapımında, mermilerin boşluk kısımlarında parafine beraber dolgu madde olarak, kağıt endüstrisinde yazı kağıdının hamuruna mürekkebi dağıtmada ve düzgün bir yüzey oluşturma amacıyla yapıştırıcı olarak kullanılır. Bunlardan başka, vernik endüstrisinde, sabun yapımında, kablo yalıtlarında ayakkabı köşe mumlardında, mühür mumu, linolyum, matbaa boyaları ve verniği, mumlu bez, makine ve araba yağları, sinek kağıdının yapımında ve bira şişçelerinde ve ayrıca yaylı çalgıların yaylarında sürmek amacıyla da kullanılmaktadır.

2- Sığla Yağı
Sığla yağı, Hamamelidacea familyasının ülkemizdeki tek temsilcisi durumunda, gövdesinde patolojik balsam kanalları bulunan ve endemik

Sığla yağ üretiminden arta kalan ve “günlük” veya “buhur” adı verilen madde ise kilise veya camilerde tütü olarak kullanılır.

3- Defne Yaprağı ve yağ

Defne ağacı ülkemizde doğal olarak yetişmesine rağmen son derece dekoratif özelliğinden dolayı sıcak ve ılıman bölgelerde, park ve bahçelerde de yaygın olarak yetiştirilmektedir. Ülkemizde Marmara, Ege ve Akdeniz bölgelerinin sahiplerini yaklaştırma 700 m. yüksekliğe kadar maki ve orman alanları arasında tek tek ya da küçük gruplar halinde bulunmaktadır. Ayrıca fazla yaygın olmamakla beraber
Karadeniz Bölgesinin sahil kesimlerinde Karadeniz Makisi olarak adlandırılan alanlarda dağınık olarak rastlanmıştır.

Define yağı ise, saf olarak ya da diğer yağlara karşıtırılan sabun ve parfüm endüstrisinde kullanılmaktadır. Define yağından yapılan sabunlar iyı bir temizleyici olduğu kadar vücut ve baştaki sivilce ve yaraları iyileştirici, saç yumuşatıcı ve kepek dökücü özelliklere sahiptir. Ayrıca indirimi kolaylaştırıcı, gaz ve öksürük giderici romatizma ağrılarını giderici ve terletici özellikleri nedeni ile kimya ve ilaç sanayiinde de harcanmaktadır.

4- Kabuk
Elde edilen yuvarlak odunun yaklaşık % 13’ü kabuktur. Günümüzde ağaçların kabuklarından elde edilen ürünlerin kullanım alanları oldukça genişletilmiştir.
artmıştır. Bunlar arasında en önemli olan, kabuktan sepi maddeleri elde edilmesi, liflerinden faydalanma, izolasyon ve yakıt maddeleri olarak değerlendirme ve bazı kimyasal maddelerin elde edilmesi sayılabilir.

Kabukların sepi maddesi olarak kullanılması içerisindeki tanen maddesinin etkisi büyüktür. Özellikle derilerin sepilmesinde doğrudan doğruya öğütülmüş kabuk unları ya da ekstraksiyon yoluyla elde edilmiş ekstraktları bu maksatla kullanılmaktadır.

Derilerin gerek ayakkabı gerekse de giyim eşyası olarak kullanılabilmesi için sepilmenleri gerekmemektedir. Önceleri deriler Meşe kabuğunun öğütülmüşün haline getirilmesi ve ham derilerin üzerine serpilmesi, hendekler içerisine istif edildikten sonra üzerlerine su dökülmesi suretiyle sepileme işlemine tabi tutulmaktadır. Ancak son zamanlarda daha yüksek oranda sepi maddesi içeren ekstraktlar kullanılmaya başlanmıştır.

Gerek duyulduğu zaman meşe baltalıklarından veya diğer ağac kabuklarından yararlanmak suretiyle ülke içinden sepi maddesi elde etme imkanları mevcuttur. Bu amaçla kullanılan meşeler, Beyaz Meşelerdir. Meşe kabuğuna öğütülerek un haline getirilmesi ve ham deriler üzerine serpilmesi, hendekler içerisine istif edildikten sonra üzerlerine su dökülmesi suretiyle sepileme işlemine tabi tutulmaktadır. Ancak son zamanlarda daha yüksek oranda sepi maddesi içeren ekstraktlar kullanılmaya başlanmıştır.

Ülkemizde bu amaçla kullanılan bir kabuk da kızılçamlardan elde edilen ve çeşitli ekstraksiyon fabrikalarında Çamex veya Pinex adı altında piyasaya sürülen ve sepi maddesi olarak kullanılan materyaldır.

Batı Akdenizi sınırlayan ülkelerde bir orman ağacı olarak geniş alanlara yayılmış ve ülkemizde doğal olarak bulunmayan, ancak Antalya civarında yetiştirilmesine çalışan Mantar Meşesi (Quercus suber L.)’nin dış kabuğundan Türkiye için bir ithal ürünü olan mantar elde edilir. Dünya Mantar Meşesi üretiminin %70 ini Portekiz karşılamlaktadır. Bu ülkeyi sırasıyla İspanya, Cezayir, Fas, Tunus, Güney Fransa ve İtalya izlemektedir.

Bunlardan başka kabuk, tarım sahalarının drenajında, hayvan ve tavuk yetişirmede, geniş çapta karayollarında şevlerin stabilizasyonunda, suların yağlardan temizlenmesinde, plastik, seramik, çatı malzemesi, tuğla ve çimento katı maddesi olarak katılmaktadır.

5- Çam Fıstığı

Çam fıstığı lezzetli ve besleyici bir madde olarak doğrudan doruya yenildiği gibi, tatlı ve pastalara katkıda kullanılan savuca de kullanılmaktadır. Ayrıca çam fıstığı preslenerek açık renkte, kokusuz ve lezzetli bir yağ da elde edilmektedir.
6-Keçi Boynuzu
Türkiye’de doğal olarak Güney Anadolu’da özellikle Antalya, Silifke, Gümüşhane, Anamur ve Dalaman dolaylarında makine vejetasyonu içerisinde yetiştirilen Leguminosa familyasına mensup Harnup (*Ceratonia siliqua* L.), 6-10 m boyları arasında yavaş büyüyen, geniş tepeli, gövdesi gri beyaz ve düzgün kabuklu, kalın dallı, herdem yeşil bir ağaçtır. Meyveleri parlık, yassı ve çoğunlukla keçiye boynuzuna benzer bir biçimde eğri olduğundan halk arasında Keçi Boynuzu olarak adlandırılmaktadır.

Keçi boynuzu meyvelerinin Purofarıl veya Trefarıl denilen ve çok sert olan tohumlarından elde edilen ve %60 oranında protein içermekte olan “Tragosol” maddesi kumaşları ayrılırme işleminde kullanılmaktadır.

7- Mahlep
Rosaceae familyasının bir türü olan *Prunus mahaleb* L. 8-10 m. ender olarak da 12 m. ender olarak boyanabilen küçük ağaç ya da ağacık görülmektedir. Vatanı Avrupa ve Batı Asya’dır. 300 m. ile 1850 m. rakımlar arasında kalkerli topraklarda ve dağılık yamaçlarda yetiştirilir. Ülkemizde en önemli üretim yerleri Tokat, Zile, Amasya, Çorum, Mardin’dir. İstanbul, Bolu, Ankara, Gümüşhane, Kars, Diyarbakır, Muğla ve Hakkari’de de doğal yayılış gösterirler.

Çoğunluk olarak yırtıcılar tarafından döken bu bitkinin yapraklarını 3-6 cm. boylarda, daireye yakın oval biçimdedir. Yan ve kenarları siğilli dişlidir ve 3 cm. uzunluğundaki yaprak sapı ile dala bağlı olup durumdadır.
Önemli orman yan ürünlerinden olan mahlep meyvesi olgunlaştırılduktan sonra etkili kısmı kurumaktadır. Kuruyan bu meyveler toplandıktan sonra içerisindeki tohum kısmı çekirdeği (endokarp) kırılarak çıkarılır. Ticarette mahlep olarak bilinen kısmı burasıdır. Kendine has güzel bir kokusu olan mahlep, ticarette mahlep olarak bilinen kısım burasıdır.

Kendine has güzel bir kokusu olan mahlep, bileşiminde salisilik asit bulunur. Bu özelliklerinden dolayı dinlendirici ve ferahlatıcıdır. Tohumlarından elde edilen yağ, ilaç, kozmetik ve boya endüstrisinde geniş çapta kullanılmaktadır. Bitkinin tohumlarından elde edilen vanilya kokulu un pasta ve çörek yapımında kullanılır. Ayrıca bu bitkinin ender içerişindeki yabancı maddelerin dibe çıkmasını sağlayarak durumunun kuralarını kullanılır.

8- Mazı
Mazı meyesinin (Quercus infectoria oliv.) tomurcukları içerisine mazı arısının bıraktığı yumurtalardan çıkan kurtların salgılarının bitki dokusunda yaptığı etki sonucunda tomurcukların deforme edilmesiyle meydana gelen patolojik oluşumdur.

Mazı meyesi, iki alt türü ile (infectoria ve boissieri) dünyada en geniş yayılımını ülkemizde yapmaktadır. 2-20 m. ye kadar boy ve 80 cm. ye kadar çap yapabilen mazı meyesi, geniş tepeli ve düzgün gövde yapmayan bir ağaçtır.

9- Palamut Kadehi, Tırnağı ve Özü
Palamut meyesi (Quercus ithaburensis) Türkiye’nin doğal meşe türlerinden birisi olup, odun ve meyve özelliklerine göre “kirmızı meşeler” grubuna girmektedir. Bu meşe türü, 20 m. ye kadar boy ve 1 m. den fazla boy yapabildi, büyük ve geniş tepeli, kalın dallı, kuşın yaprağını döken bir ağacır. Halk dilinde palamut (pelit) adı verilen meyveleri, yuvarlak, yarı yuvarlak veya elipsoid biçimindeki büyük bir
kadeh (kupula) içinde bulunmaktadır ve iki yılda olgunlaşmaktadır. Kadeh çok gelişmiş ince uzun çeritler halinde sık “türnak”larla kaplıdır.

Meyvelerin kadeh ve turnak kısımlarında önemli miktarlarda tanen vardır. Bu miktar kadehte %33, turnaklarında ise %41,5 civarındadır.

Bu türün dünyada üzerinde tabii yayılış alanı Yunanistan, Arnavutluk, İtalya, Suriye, Ürdün, Türkiye kısmen Balkanlar ve hemen hemen bütün Doğu Akdeniz ülkeleridir. Ülkemizde yaklaşık olarak 260 bin hektar yayılış alanına sahip olan palamut meşesi, Ege, Güney, Güneydoğu Anadolu Bölgesi ile İç Anadolu, Marmara ve Trakya bölgelerinde lokal olarak yayılış göstermektedir.

10- Sonuç
Ormanlarımızın tahrip edilmişse pahasına elde edilen orman tali ürünlerimizin değerlendirilmesi ve döviz kaynağı haline getirilebilmesi için her cademedeği ilgili ve yetkili kişilerin gerekeni yapması ve yaptırması gerekli. Bu sebeple başta ormanlarında bulunan tali ürünlerin üretiminin gelişigüzel, plansız ve programsız olarak yapılması engelleyip yetkili kuruluşlara daha planlı bir şekilde üretiminin yapılması sağlanmalıdır. Ülkemizin döviz kaybını önlemek maksadıyla üretilen tali ürünlerin yurt içi ve yurt dışında değerlendirilmesinin hammadde olarak değil mamul olarak yapılması sağlanmalıdır. Bunun için gerekli yatırım imkanları ve teşviklerin yapılması gerekmektedir. Bu şekilde üretilen yan ürünlerimizden hem makro düzeyde ülkemiz kazanç sağlayacak, hem de kirsal kesimde yaşayan vatandaşlarımıza yeni geçim kaynakları sunulmuş olacaktır.
KAYNAKLAR

Topkapı Sarayı’nın Avlu Düzeni

Araş Gör. Ülkü DUMAN
Gazi Üniversitesi, Kastamonu Orman Fakültesi
Peyzaj Mimarlığı Bölümü

I. GİRİŞ

Topkapı Sarayı; 400 yıl süresince Osmanlı sultanlarının yaşamama mekanı ve devletin yönetim merkezi olarak kullanılmış; yeri, yerleşim düzeni, binaları, törenleri ve yaşam biçimi ile Avrupalı ve Osmanlı yazarların daima ilgisini çekmiştir. 15. yüzyılda başlayan Topkapı Sarayı ile ilgili pek çok çalışma (kanunnameler, albümler, gravürler, plan krokileri, seyahatnameler ve anılar) bulunmaktadır.

Topkapı Sarayının avlu düzenini inceleden önce Türklerde ve İslam’da saray yapılarını incelemekte fayda vardır.

II. TÜRKLERDE VE İSLAMDA SARAY YAPILARI

Sarayın büyük bir yapı kompleksi olarak erken Ortaçağ’dan bu yana Türk ve İslam tarihinde örnekleri vardır. Ne var ki yeterli arkeoljik verilere dayanacak bilgilerin, özellikle Türk tarihiyle ilişkili olanları çok sınırlıdır. Ancak elde edilen bilgileri kısaca şu şekilde özetlemek mümkündür:

- Hükümdarın karizmatik kişiliği ile egemen olduğu Eski Türk topluluklarında, onun oturduğu yer merkeze olmalı idi. Yerleşik düzenin adımı adımı geçen Türklerin göçebe toplumdaki hükümardar çadırının yerini; yerleşik toplumda halk konutundan farklı özelliklere sahip, dayanıklı malzeme ile daha büyük ve özenle yapılmış bütün resmi işlevleri barındıran saray yapıları almıştır.
Hükümdarın merkezci konumu İslamiyet öncesi yerleşik düzende değişmeden devam etmiştir. Saray yapıları genelde kare, dikdörtgen veya dörtgen biçiminde, sıkıştırılmış kerpiçten yapılmış surlarla çevrili yerleşmenin tam ortasında yer alan İç Kale’de bulunmaktadır. Karlush yerleşimlerinden Ak-tepe’de ve Hoço’da yerleşmenin ortasında yer alan saray yapıları merkezi konumunu korumaktadır.

Erken dönem İslam saray yapıları ise; kursal malikaneler olarak kent dışında ve kent sarayları olarak kent merkezindeki cami yanında bulunmaktadır. Anadolu’daki örnekler iki farklı uygulama halindedir. Yerleşim düzenlerinin dışında saray-kent oluşumları ile kentin yerleşim alanına dıştan eklemelenen konumdadır.

- Eski Türk Devletlerinde saray, hükümdarın yaşamını sürdürdüğü yer olma işlevinin yanı sıra, yönetimle ilgili işlerin ve bilimsel çalışmaların yapıldığı yer olarak tek merkez niteliğinde görülmektedir.

İslami dönemde, sultanın gösterişli yaşam süreci kent dışı saray yapılarında resmi işlevin azaldığı; kent saraylarında ise bu işlevin ağırlığı bilinmektedir. Anadolu’daki Selçuklu ve Beylik dönemi saraylarının, yönetimle ilgili işlerinin, kentin Ulu Camisi ve diğer sosyo-kültürel yapıların paylaşıldığı konusu ayrıntılı çalışmalara ihtiyaç vardır.

III. TOPKAPI SARAYI

Topkapı Sarayı ne Rönesanstan sonra gelişen bir Avrupa sarayı ne de bir Ortaçağ şatosu imgesine yakındır. Sarayın planlanması çok basit işlevsel bir düzene göre kurulmuştur; bunlar hiyerarşik bir sıralamayla; padişahın yaşadığı mekan, devletin işlerinin yürütüldüğü mekan, kent meydanı niteliğinde sarayın ve halkın buluştuğu meydanıdır.

3.1. Tarihiçe

3.2. Topkapı Sarayının Avlu Düzeni

Bab-ı Hümayun ve Birinci Avlu
Sur-i Sultani üzerinde Ayasofya meydanına açılan sarayın ana giriş kapısı olan Bab-ı Hümayun’un inşaati, 20. yy’ın başına kadar görülen

Bab-ı Hümayun’dan girildikten sonra sarayın dış bahçeleriyle bulunan, sınırları belirsiz, içinde sayısız işlevi ve onlarla tekabül eden yapılar barındıran ve İstanbul’un herhangi bir meydanı gibi kalabalık olan büyük alan (Birinci Avlu) sarayın bütün işlerinin görüldüğü bir kent meydanydı. Bugün çevresinde Aya İrini dışında klasik dönemde hemen hemen hiçbir yapı kalmamış olan bu meydanda ve çevresinde sarayın silah depoları, sarayın özel darphanesi, büyük bir avlu içinde sarayın odun depoları ve odun taşyan hayvanların geçtiği arabalar, bu hayvanların arlandığı, inşaat malzemesi depoları, saray yaplarının onarımını yapan atölyeler, bunları barındıran yapılar, İstanbul’un yapıştırdığı kontrol eden şehreminin bürosu, saray hasılarının dokunduğu atölyeler, Marmara tarafından 120 hastayı barındıran saray hastanesi, saray firını, saraya su sağlayan sistemin atla çalışan dolabı, onu çalıştırmanın yatakhaneleri, ahırlar, mescitleri gibi sürekli ya da geçici yapılmış birçok yapı bulunuyordu. Bu avlu divana sunulan dilekçelerin toplanıldığı yerdi. Fakat divanda işi olanların Divan Meydanı’na (İkinci Avlu) geçtikleri de bilinir. Bu meydan yeniciyle baltacıların, acemiğlânın, ziyaretçilerin, seyislerin, inşaatçıların, oduncuların, içi olan halkın bir kent meydanydı. Ayrıca Alay Meydanı’nda alaylarda ve bayram günlerinde Aya İrini önünde filler ve zürafalar bulunurdu.

Babüsselam (Orta Kapı) ve İkinci Avlu (Divan Meydanı)
Aşıl saray Babüsselam’dan başlar. Sultan dışında herkesin atlarından inip yaya olarak geçtikleri Orta Kapı’dan sonra, sultanla devlet idaresinin kesitiği İkinci Avlu, mimari öğelerle tanımlanmış, ortalamı 110x170 m boyutunda bir iç avludur. Kapıların revakları, Kubbahtı ve İç Hazine avlu boşluğu çöktü yapayak yerleştirmiştir. Bu avlu da Enderun girişinin önune olan Babüssaade ’ye aksiyal olarak yerleşmemiştir. Orta Kapı aksi ile 10

Babüsselem: Fatih döneminde yapılan bu yapı, çeşitli onarımalar geçmesine karşın, kuleleriyle birlikte hemen hemen evrensel bir giriş yapısı semasına göre inşa edilmiştir. İki poligonal kule ve aralarındaki beden duvarına açılan büyük bir eyvan içindeki giriş kapısı ile girilen geniş bir taşlık ve iki yanında kapıcı odaları ve avlu çıkışında ikinci bir revak vardır.

Dış Hazine: Kubbealtı binasına bitişik bu birim, uzunlamasına ekende yer alan sekiz kubbeli bir yapı olarak tasarlanmıştır. Dış Hazine’nin girişi uzun cephe olarak ve Sarayın İlk ve İkinci avlularını ayırarak duvarla bitişik inşa edilen Hazine binasının içinden sağlanan ve yapımı en geç XVII. Yüzyılın ilk yarısına tarihlenen geçitle, sarayın İkinci Avlu ve Harem bölümü bağlantısı yapılmıştır.

Ayrıca İkinci Avlu’da bu avludan herhangi bir girişi olmayan Zülüflü Baltacılar Koşuşu bulunmaktadır.

Babüssaade(Akağalar Kapısı) ve Üçüncü Avlu (Enderun Meydanı)

hamam kalıntıları, avlunun sol tarafında Silahtar Hazinesi, Kutsal Emanetlerin saklandığı dört kubbeli Hırka-i Saadet Dairesi yer alır.

Üçüncü Avlu’da bulunan önemli yapılar:

Dördüncü Avlu (Sofa-i Hümayun)
Üçüncü Avlu’da biri kapalı olmak üzere üç geçitle Dördüncü Avlu’ya geçilir. Burası bir avludan çok, bahçeleri ve bunların köşelerine yerleştirilen çeşitli köşkleriyle bir dinlenme yeri görünümündedir. Dördüncü Avlu, birbirinden setlerle ayrılan alanlardan, köşklerden ve

Hekimbaşi Kulesi’nin önünde Sultan IV. Murat tarafından padişahların burada oturarak cirit ve tomak gibi spor karşılaşmalarını seyretneleri için yaptırduğu Taş Taht yer almaktadır. Avlunun sol tarafındaki birinci sette ise Lale Bahçesi bulunmaktadır.

IV. SONUÇ

Topkapı Saray'ında Birinci Avlu, İkinci Avlu, Üçüncü Avlu ve Boğaz'a bakan köşkler öndeği Dördüncü Avlu, büyük bir olasılıkla, Bizantion'un Akropol'unun alt yapısı tekbül eden bir platoya oturmaktadır. Bunların çevresinde Sur-ı Sultan ile sınırlanan alanda sarayın bahçeleri, bahçe ve kıyı köşkleri, çiçeklikleri, cirit ve tomak meydanları, gezinti yerleri ve servis yapıları vardır. 19. yy’ın sonunda ve 20. yy’da yapılan birçok yapı, demiryolunun geçirilmesi, bahçe'nin bir bölümüne Gülhane Parkı olarak halka açılması ve bakımsızlık saray bahçelerinin yık olması neden olmuştur. Bugün saray bahçeleri hakkında bilgileri başta yabancı gezginlerin seyahatnamelelerinden,

Osmanlı Dönemi saray sınıfının yaşantısını günümüzde taşıyan ve her yıl pek çok yerli ve yabancı turistin gezdiği bu alanın bahçeleriyle birlikte bir bütün olarak restore edilmesi gerekliliği gözardı edilmemelidir.

KAYNAKLAR

